電子干擾是現(xiàn)代電子戰(zhàn)的重要組成部分,包括無源干擾和有源干擾,其中,有源干擾可以分為欺騙干擾和遮蔽干擾。欺騙干擾是采用假的目標和信息作用于雷達的目標檢測和跟蹤系統(tǒng),使雷達不能正確的檢測真實目標或者不能正確的測量真正目標的參數(shù)信息,從而達到迷惑或擾亂雷達對真正目標檢測和跟蹤的目的。遮蓋式的干擾是使用噪聲或類似噪聲的干擾信號遮蓋或淹沒有用信號,阻止雷達檢測目標信息。對于欺騙干擾可以使用與雷達信號的識別方法對其進行檢測設別,但是對于使用噪聲調(diào)制的遮蔽干擾信號,因為其自身的強隨機性,很難使用雷達信號的檢測識別方法。但是由于干擾信號是時間上連續(xù)的信號,在一定的時間內(nèi)采樣的數(shù)目可以很大;而對雷達來說,積累個數(shù)受到目標照射時間和脈沖間隔的限制,這是干擾噪聲檢測的優(yōu)勢所在,也成為了尋求檢測遮蔽干擾信號的突破口。
1 噪聲調(diào)頻信號功率譜檢測原理
噪聲調(diào)頻干擾信號最常見的是射頻振蕩的頻率與調(diào)制噪聲電壓ξ(t)成線性關系,為了方便把噪聲調(diào)頻,信號的時域如式(1)
設調(diào)制噪聲電壓ξ(t)是高斯噪聲,其幅度概率密度分布為高斯函數(shù)
由于噪聲調(diào)頻干擾的角頻率與ξ(t)呈線性關系,故瞬時角頻率或角頻偏的概率密度也應為高斯分布,其均方根的值為
式(6)中的積分只有在mfe》1和mfe《1時才能近似求解。
當mfe》1可以得到噪聲調(diào)頻信號的干擾帶寬(半功率帶寬)為
對于噪聲調(diào)頻信號,由于信號的隨機性很強,很難在使用相關的辦法對這類噪聲調(diào)制的信號進行檢測,所以常用的瞬時相關、時頻分布等檢測方法對其無效。但是由于接收系統(tǒng)在設計時,其系統(tǒng)的熱噪聲相對比較穩(wěn)定,所以其熱噪聲功率譜也是相對穩(wěn)定的。當由調(diào)頻干擾信號進入接收機時,根據(jù)式(6),其功率譜在干擾頻帶 [f0一△fj/2,f0+△fj/2]內(nèi)會比無調(diào)頻干擾信號時在能量上有明顯的提高,根據(jù)這一特征,可以檢測出干擾信號。并相應的確定帶寬和中心頻率,如圖l所示。
當白噪聲累加到調(diào)頻干擾后在得到的功率譜,如圖2所示。
從圖2中可以看出在SNR=一10 dB情況下,可以檢測處噪聲調(diào)頻干擾信號,且在中心頻率處的能量有所衰減。由于考慮仿真速度的需要此處所取時長較短,如果加長時間的積累,即相當于增加了能量的積累,得到的檢測靈敏度會更高。對于檢測門限的設定,是在實際應用中關心的問題。這里簡述兩種參考門限的確定方法。第一,對于系統(tǒng)的熱噪聲是在設計時所確定的固有性質(zhì),相對外界環(huán)境要穩(wěn)定的多,在設置門限時可以考慮當切斷外來所有的信號輸入,得到的機內(nèi)熱噪聲的功率均值數(shù)作為參考門限,這樣的好處是確保此時噪聲純凈,缺點是沒有考慮環(huán)境噪聲的存在,從而出現(xiàn)虛警的概率增加,這也是文中使用的方法;第二,是在偵察天線沒有對準干擾源的情況下,得到內(nèi)外混合噪聲的各個頻點的功率均值作為參考門限,其優(yōu)點是能夠真實的反映實際情況,但是如果此時有其它發(fā)射機信號的輸入,則檢測出現(xiàn)漏警的概率會大大增加。
2 相似理論
在信號與系統(tǒng)學科中,相關性是一種在時域中對信號特性進行描述的重要方法。由于信號與其功率譜函數(shù)是一對傅里葉變換,在信號分析中往往利用它來分析隨機信號的功率譜分布,以致不少人一提到相關性馬上會聯(lián)想到信號功率譜的計算。假設得到的兩信號分別為X(t),Y(t)??梢赃x擇當倍數(shù)K使KY(t)去逼近 X(t)。在此可以借用誤差能量來度量波形的相似程度。
其中Er代表誤差能量,K的選擇是為了使誤差能量最小,可以得出
另外,可定義相對誤差能量為
其中Pxy為相關系數(shù)??梢酝瞥?/p>
對于能量有限的信號而言,能量是確定的,相關系數(shù)的大小只由X(t)*Y(t)積分決定。若兩個完全不相似的信號,其幅度取值和出現(xiàn)時刻是相互獨立、彼此無關的,即X(t)*Y(t)=0,其積分結果也為0,所以當相關系數(shù)為O時相似度最差,即不相關。當相關系數(shù)為1時,則誤差能量為0,說明這兩個信號相似度很好,是線性相關的。因此把相關系數(shù)作為兩個信號相似性的度量完全是有理論依據(jù)的、合理的。
3 利用相似理論的噪聲調(diào)頻信號檢測
為了討論方便,假設接收機為理想接收機,即在通帶內(nèi),其幅頻特性為一固定值,相頻為線性,而通帶之外增益為零,中心頻率ω0為且遠大于接收機帶寬△ω,并假定背景噪聲是高斯白噪聲,這種假設不失一般性,基本可以很好地描述常規(guī)接收機的檢測特性。
在時長1 ms,信噪比從一10~10 dB進行100次蒙特卡洛實驗,其信號具體形式如第2節(jié)所述,首先得到信號和基準白噪聲的各自的功率譜,然后代入式(12)中,計算其相關系數(shù)??紤]到虛警的可能性,通常認為當相關系數(shù)<0.8時存在噪聲調(diào)頻干擾,否則沒有噪聲干擾信號進入。所得結果,如圖3所示。
從圖3可以看出在信噪比一3 dB以上能夠在時長0.1 ms下做到100%的檢測。充分說明了該方法對檢測識別噪聲調(diào)頻信號是可行的。而且根據(jù)積累時長的不同,對算法檢測的靈敏度影響很大,在圖4給出了不同積累時間10次蒙特卡洛實驗的檢測概率。
從圖4中可以看出,隨著時長的增加不但檢測靈敏度有比較明顯的提高,同時檢測曲線更加的平滑,誤差減小。
4 結束語
由于噪聲調(diào)頻信號的強隨機性,利用相關的各種檢測方法無法對此類信號做出有效的檢測。文中利用功率譜積累和相似函數(shù)的方法對噪聲調(diào)頻信號進行了檢測,通過仿真試驗驗證了方法的可行性,說明檢測概率與信噪比和累計時間長度的關系。