国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
SQL SERVER海量數(shù)據(jù)庫的查詢優(yōu)化及分頁算法方案
很多人不知道SQL語句在SQL SERVER中是如何執(zhí)行的,他們擔(dān)心自己所寫的SQL語句會被SQL SERVER誤解。比如:
select * from table1 where name=‘zhangsan‘ and tID > 10000
  和執(zhí)行:
select * from table1 where tID > 10000 and name=‘zhangsan‘
  一些人不知道以上兩條語句的執(zhí)行效率是否一樣,因為如果簡單的從語句先后上看,這兩個語句的確是不一樣,如果tID是一個聚合索引,那么后一句僅僅從表的10000條以后的記錄中查找就行了;而前一句則要先從全表中查找看有幾個name=‘zhangsan‘的,而后再根據(jù)限制條件條件tID>10000來提出查詢結(jié)果。
  事實上,這樣的擔(dān)心是不必要的。SQL SERVER中有一個“查詢分析優(yōu)化器”,它可以計算出where子句中的搜索條件并確定哪個索引能縮小表掃描的搜索空間,也就是說,它能實現(xiàn)自動優(yōu)化。
  雖然查詢優(yōu)化器可以根據(jù)where子句自動的進(jìn)行查詢優(yōu)化,但大家仍然有必要了解一下“查詢優(yōu)化器”的工作原理,如非這樣,有時查詢優(yōu)化器就會不按照您的本意進(jìn)行快速查詢。
  在查詢分析階段,查詢優(yōu)化器查看查詢的每個階段并決定限制需要掃描的數(shù)據(jù)量是否有用。如果一個階段可以被用作一個掃描參數(shù)(SARG),那么就稱之為可優(yōu)化的,并且可以利用索引快速獲得所需數(shù)據(jù)。
  SARG的定義:用于限制搜索的一個操作,因為它通常是指一個特定的匹配,一個值得范圍內(nèi)的匹配或者兩個以上條件的AND連接。形式如下:
列名 操作符 <常數(shù) 或 變量>

<常數(shù) 或 變量> 操作符列名
  列名可以出現(xiàn)在操作符的一邊,而常數(shù)或變量出現(xiàn)在操作符的另一邊。如:
Name=’張三’
價格>5000
5000<價格
Name=’張三’ and 價格>5000
  如果一個表達(dá)式不能滿足SARG的形式,那它就無法限制搜索的范圍了,也就是SQL SERVER必須對每一行都判斷它是否滿足WHERE子句中的所有條件。所以一個索引對于不滿足SARG形式的表達(dá)式來說是無用的。
  介紹完SARG后,我們來總結(jié)一下使用SARG以及在實踐中遇到的和某些資料上結(jié)論不同的經(jīng)驗:

  1、Like語句是否屬于SARG取決于所使用的通配符的類型

  如:name like ‘張%’ ,這就屬于SARG

  而:name like ‘%張’ ,就不屬于SARG。

  原因是通配符%在字符串的開通使得索引無法使用。

  2、or 會引起全表掃描

Name=’張三’ and 價格>5000 符號SARG,而:Name=’張三’ or 價格>5000 則不符合SARG。使用or會引起全表掃描。

  3、非操作符、函數(shù)引起的不滿足SARG形式的語句

  不滿足SARG形式的語句最典型的情況就是包括非操作符的語句,如:NOT、!=、<>、!<、!>、NOT EXISTS、NOT IN、NOT LIKE等,另外還有函數(shù)。下面就是幾個不滿足SARG形式的例子:

ABS(價格)<5000

Name like ‘%三’

  有些表達(dá)式,如:

WHERE 價格*2>5000

  SQL SERVER也會認(rèn)為是SARG,SQL SERVER會將此式轉(zhuǎn)化為:

WHERE 價格>2500/2

  但我們不推薦這樣使用,因為有時SQL SERVER不能保證這種轉(zhuǎn)化與原始表達(dá)式是完全等價的。

  4、IN 的作用相當(dāng)與OR

  語句:

Select * from table1 where tid in (2,3)

  和

Select * from table1 where tid=2 or tid=3

  是一樣的,都會引起全表掃描,如果tid上有索引,其索引也會失效。

  5、盡量少用NOT

  6、exists 和 in 的執(zhí)行效率是一樣的

  很多資料上都顯示說,exists要比in的執(zhí)行效率要高,同時應(yīng)盡可能的用not exists來代替not in。但事實上,我試驗了一下,發(fā)現(xiàn)二者無論是前面帶不帶not,二者之間的執(zhí)行效率都是一樣的。因為涉及子查詢,我們試驗這次用SQL SERVER自帶的pubs數(shù)據(jù)庫。運行前我們可以把SQL SERVER的statistics I/O狀態(tài)打開。

  (1)select title,price from titles where title_id in (select title_id from sales where qty>30)

  該句的執(zhí)行結(jié)果為:

  表 ‘sales‘。掃描計數(shù) 18,邏輯讀 56 次,物理讀 0 次,預(yù)讀 0 次。

  表 ‘titles‘。掃描計數(shù) 1,邏輯讀 2 次,物理讀 0 次,預(yù)讀 0 次。

  (2)select title,price from titles where exists (select * from sales where sales.title_id=titles.title_id and qty>30)

  第二句的執(zhí)行結(jié)果為:

  表 ‘sales‘。掃描計數(shù) 18,邏輯讀 56 次,物理讀 0 次,預(yù)讀 0 次。

  表 ‘titles‘。掃描計數(shù) 1,邏輯讀 2 次,物理讀 0 次,預(yù)讀 0 次。

  我們從此可以看到用exists和用in的執(zhí)行效率是一樣的。

  7、用函數(shù)charindex()和前面加通配符%的LIKE執(zhí)行效率一樣

  前面,我們談到,如果在LIKE前面加上通配符%,那么將會引起全表掃描,所以其執(zhí)行效率是低下的。但有的資料介紹說,用函數(shù)charindex()來代替LIKE速度會有大的提升,經(jīng)我試驗,發(fā)現(xiàn)這種說明也是錯誤的:

select gid,title,fariqi,reader from tgongwen where charindex(‘刑偵支隊‘,reader)>0 and fariqi>‘2004-5-5‘

  用時:7秒,另外:掃描計數(shù) 4,邏輯讀 7155 次,物理讀 0 次,預(yù)讀 0 次。

select gid,title,fariqi,reader from tgongwen where reader like ‘%‘ + ‘刑偵支隊‘ + ‘%‘ and fariqi>‘2004-5-5‘

  用時:7秒,另外:掃描計數(shù) 4,邏輯讀 7155 次,物理讀 0 次,預(yù)讀 0 次。

  8、union并不絕對比or的執(zhí)行效率高

  我們前面已經(jīng)談到了在where子句中使用or會引起全表掃描,一般的,我所見過的資料都是推薦這里用union來代替or。事實證明,這種說法對于大部分都是適用的。

select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ or gid>9990000

  用時:68秒。掃描計數(shù) 1,邏輯讀 404008 次,物理讀 283 次,預(yù)讀 392163 次。

select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ 

union

select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid>9990000

  用時:9秒。掃描計數(shù) 8,邏輯讀 67489 次,物理讀 216 次,預(yù)讀 7499 次。

  看來,用union在通常情況下比用or的效率要高的多。

  但經(jīng)過試驗,筆者發(fā)現(xiàn)如果or兩邊的查詢列是一樣的話,那么用union則反倒和用or的執(zhí)行速度差很多,雖然這里union掃描的是索引,而or掃描的是全表。

select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ or fariqi=‘2004-2-5‘

  用時:6423毫秒。掃描計數(shù) 2,邏輯讀 14726 次,物理讀 1 次,預(yù)讀 7176 次。

select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=‘2004-9-16‘ 

union

select gid,fariqi,neibuyonghu,reader,title from Tgongwen where  fariqi=‘2004-2-5‘

  用時:11640毫秒。掃描計數(shù) 8,邏輯讀 14806 次,物理讀 108 次,預(yù)讀 1144 次。

  9、字段提取要按照“需多少、提多少”的原則,避免“select *”

  我們來做一個試驗:

select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc

  用時:4673毫秒

select top 10000 gid,fariqi,title from tgongwen order by gid desc

  用時:1376毫秒

select top 10000 gid,fariqi from tgongwen order by gid desc

  用時:80毫秒

  由此看來,我們每少提取一個字段,數(shù)據(jù)的提取速度就會有相應(yīng)的提升。提升的速度還要看您舍棄的字段的大小來判斷。

  10、count(*)不比count(字段)慢

  某些資料上說:用*會統(tǒng)計所有列,顯然要比一個世界的列名效率低。這種說法其實是沒有根據(jù)的。我們來看:

select count(*) from Tgongwen

  用時:1500毫秒

select count(gid) from Tgongwen 

  用時:1483毫秒

select count(fariqi) from Tgongwen

  用時:3140毫秒

select count(title) from Tgongwen

  用時:52050毫秒

  從以上可以看出,如果用count(*)和用count(主鍵)的速度是相當(dāng)?shù)?而count(*)卻比其他任何除主鍵以外的字段匯總速度要快,而且字段越長,匯總的速度就越慢。我想,如果用count(*), SQL SERVER可能會自動查找最小字段來匯總的。當(dāng)然,如果您直接寫count(主鍵)將會來的更直接些。

  11、order by按聚集索引列排序效率最高

  我們來看:(gid是主鍵,fariqi是聚合索引列)

select top 10000 gid,fariqi,reader,title from tgongwen

  用時:196 毫秒。 掃描計數(shù) 1,邏輯讀 289 次,物理讀 1 次,預(yù)讀 1527 次。

select top 10000 gid,fariqi,reader,title from tgongwen order by gid asc

  用時:4720毫秒。 掃描計數(shù) 1,邏輯讀 41956 次,物理讀 0 次,預(yù)讀 1287 次。

select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc

  用時:4736毫秒。 掃描計數(shù) 1,邏輯讀 55350 次,物理讀 10 次,預(yù)讀 775 次。

select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi asc

  用時:173毫秒。 掃描計數(shù) 1,邏輯讀 290 次,物理讀 0 次,預(yù)讀 0 次。

select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi desc

  用時:156毫秒。 掃描計數(shù) 1,邏輯讀 289 次,物理讀 0 次,預(yù)讀 0 次。

  從以上我們可以看出,不排序的速度以及邏輯讀次數(shù)都是和“order by 聚集索引列” 的速度是相當(dāng)?shù)?但這些都比“order by 非聚集索引列”的查詢速度是快得多的。

  同時,按照某個字段進(jìn)行排序的時候,無論是正序還是倒序,速度是基本相當(dāng)?shù)摹?br>
  12、高效的TOP

  事實上,在查詢和提取超大容量的數(shù)據(jù)集時,影響數(shù)據(jù)庫響應(yīng)時間的最大因素不是數(shù)據(jù)查找,而是物理的I/0操作。如:

select top 10 * from (

select top 10000 gid,fariqi,title from tgongwen

where neibuyonghu=‘辦公室‘

order by gid desc) as a

order by gid asc

  這條語句,從理論上講,整條語句的執(zhí)行時間應(yīng)該比子句的執(zhí)行時間長,但事實相反。因為,子句執(zhí)行后返回的是10000條記錄,而整條語句僅返回10條語句,所以影響數(shù)據(jù)庫響應(yīng)時間最大的因素是物理I/O操作。而限制物理I/O操作此處的最有效方法之一就是使用TOP關(guān)鍵詞了。TOP關(guān)鍵詞是SQL SERVER中經(jīng)過系統(tǒng)優(yōu)化過的一個用來提取前幾條或前幾個百分比數(shù)據(jù)的詞。經(jīng)筆者在實踐中的應(yīng)用,發(fā)現(xiàn)TOP確實很好用,效率也很高。但這個詞在另外一個大型數(shù)據(jù)庫ORACLE中卻沒有,這不能說不是一個遺憾,雖然在ORACLE中可以用其他方法(如:rownumber)來解決。在以后的關(guān)于“實現(xiàn)千萬級數(shù)據(jù)的分頁顯示存儲過程”的討論中,我們就將用到TOP這個關(guān)鍵詞。

  到此為止,我們上面討論了如何實現(xiàn)從大容量的數(shù)據(jù)庫中快速地查詢出您所需要的數(shù)據(jù)方法。當(dāng)然,我們介紹的這些方法都是“軟”方法,在實踐中,我們還要考慮各種“硬”因素,如:網(wǎng)絡(luò)性能、服務(wù)器的性能、操作系統(tǒng)的性能,甚至網(wǎng)卡、交換機等。

 三、實現(xiàn)小數(shù)據(jù)量和海量數(shù)據(jù)的通用分頁顯示存儲過程

  建立一個web 應(yīng)用,分頁瀏覽功能必不可少。這個問題是數(shù)據(jù)庫處理中十分常見的問題。經(jīng)典的數(shù)據(jù)分頁方法是:ADO 紀(jì)錄集分頁法,也就是利用ADO自帶的分頁功能(利用游標(biāo))來實現(xiàn)分頁。但這種分頁方法僅適用于較小數(shù)據(jù)量的情形,因為游標(biāo)本身有缺點:游標(biāo)是存放在內(nèi)存中,很費內(nèi)存。游標(biāo)一建立,就將相關(guān)的記錄鎖住,直到取消游標(biāo)。游標(biāo)提供了對特定集合中逐行掃描的手段,一般使用游標(biāo)來逐行遍歷數(shù)據(jù),根據(jù)取出數(shù)據(jù)條件的不同進(jìn)行不同的操作。而對于多表和大表中定義的游標(biāo)(大的數(shù)據(jù)集合)循環(huán)很容易使程序進(jìn)入一個漫長的等待甚至死機。

  更重要的是,對于非常大的數(shù)據(jù)模型而言,分頁檢索時,如果按照傳統(tǒng)的每次都加載整個數(shù)據(jù)源的方法是非常浪費資源的?,F(xiàn)在流行的分頁方法一般是檢索頁面大小的塊區(qū)的數(shù)據(jù),而非檢索所有的數(shù)據(jù),然后單步執(zhí)行當(dāng)前行。

  最早較好地實現(xiàn)這種根據(jù)頁面大小和頁碼來提取數(shù)據(jù)的方法大概就是“俄羅斯存儲過程”。這個存儲過程用了游標(biāo),由于游標(biāo)的局限性,所以這個方法并沒有得到大家的普遍認(rèn)可。

  后來,網(wǎng)上有人改造了此存儲過程,下面的存儲過程就是結(jié)合我們的辦公自動化實例寫的分頁存儲過程:

CREATE procedure pagination1

(@pagesize int,  --頁面大小,如每頁存儲20條記錄

@pageindex int   --當(dāng)前頁碼

)

as

set nocount on

begin

declare @indextable table(id int identity(1,1),nid int)  --定義表變量

declare @PageLowerBound int  --定義此頁的底碼

declare @PageUpperBound int  --定義此頁的頂碼

set @PageLowerBound=(@pageindex-1)*@pagesize

set @PageUpperBound=@PageLowerBound+@pagesize

set rowcount @PageUpperBound

insert into @indextable(nid) select gid from TGongwen where fariqi >dateadd(day,-365,getdate()) order by fariqi desc

select O.gid,O.mid,O.title,O.fadanwei,O.fariqi from TGongwen O,@indextable t where O.gid=t.nid

and t.id>@PageLowerBound and t.id<=@PageUpperBound order by t.id

end

set nocount off

  以上存儲過程運用了SQL SERVER的最新技術(shù)――表變量。應(yīng)該說這個存儲過程也是一個非常優(yōu)秀的分頁存儲過程。當(dāng)然,在這個過程中,您也可以把其中的表變量寫成臨時表:CREATE TABLE #Temp。但很明顯,在SQL SERVER中,用臨時表是沒有用表變量快的。所以筆者剛開始使用這個存儲過程時,感覺非常的不錯,速度也比原來的ADO的好。但后來,我又發(fā)現(xiàn)了比此方法更好的方法。

  筆者曾在網(wǎng)上看到了一篇小短文《從數(shù)據(jù)表中取出第n條到第m條的記錄的方法》,全文如下:

從publish 表中取出第 n 條到第 m 條的記錄: 
SELECT TOP m-n+1 * 
FROM publish 
WHERE (id NOT IN 
    (SELECT TOP n-1 id 
     FROM publish)) 

id 為publish 表的關(guān)鍵字 

  我當(dāng)時看到這篇文章的時候,真的是精神為之一振,覺得思路非常得好。等到后來,我在作辦公自動化系統(tǒng)(ASP.NET+ C#+SQL SERVER)的時候,忽然想起了這篇文章,我想如果把這個語句改造一下,這就可能是一個非常好的分頁存儲過程。于是我就滿網(wǎng)上找這篇文章,沒想到,文章還沒找到,卻找到了一篇根據(jù)此語句寫的一個分頁存儲過程,這個存儲過程也是目前較為流行的一種分頁存儲過程,我很后悔沒有爭先把這段文字改造成存儲過程:

CREATE PROCEDURE pagination2
(
 @SQL nVARCHAR(4000),    --不帶排序語句的SQL語句
 @Page int,              --頁碼
 @RecsPerPage int,       --每頁容納的記錄數(shù)
 @ID VARCHAR(255),       --需要排序的不重復(fù)的ID號
 @Sort VARCHAR(255)      --排序字段及規(guī)則
)
AS

DECLARE @Str nVARCHAR(4000)

SET @Str=‘SELECT   TOP ‘+CAST(@RecsPerPage AS VARCHAR(20))+‘ * FROM (‘+@SQL+‘) T WHERE T.‘+@ID+‘NOT IN 
(SELECT   TOP ‘+CAST((@RecsPerPage*(@Page-1)) AS VARCHAR(20))+‘ ‘+@ID+‘ FROM (‘+@SQL+‘) T9 ORDER BY ‘+@Sort+‘) ORDER BY ‘+@Sort

PRINT @Str

EXEC sp_ExecuteSql @Str
GO

  其實,以上語句可以簡化為:

SELECT TOP 頁大小 *

FROM Table1

WHERE (ID NOT IN

          (SELECT TOP 頁大小*頁數(shù) id

         FROM 表

         ORDER BY id))

ORDER BY ID

  但這個存儲過程有一個致命的缺點,就是它含有NOT IN字樣。雖然我可以把它改造為:

SELECT TOP 頁大小 *

FROM Table1

WHERE not exists

(select * from (select top (頁大小*頁數(shù)) * from table1 order by id) b where b.id=a.id )

order by id

  即,用not exists來代替not in,但我們前面已經(jīng)談過了,二者的執(zhí)行效率實際上是沒有區(qū)別的。

  既便如此,用TOP 結(jié)合NOT IN的這個方法還是比用游標(biāo)要來得快一些。

  雖然用not exists并不能挽救上個存儲過程的效率,但使用SQL SERVER中的TOP關(guān)鍵字卻是一個非常明智的選擇。因為分頁優(yōu)化的最終目的就是避免產(chǎn)生過大的記錄集,而我們在前面也已經(jīng)提到了TOP的優(yōu)勢,通過TOP 即可實現(xiàn)對數(shù)據(jù)量的控制。

  在分頁算法中,影響我們查詢速度的關(guān)鍵因素有兩點:TOP和NOT IN。TOP可以提高我們的查詢速度,而NOT IN會減慢我們的查詢速度,所以要提高我們整個分頁算法的速度,就要徹底改造NOT IN,同其他方法來替代它。

  我們知道,幾乎任何字段,我們都可以通過max(字段)或min(字段)來提取某個字段中的最大或最小值,所以如果這個字段不重復(fù),那么就可以利用這些不重復(fù)的字段的max或min作為分水嶺,使其成為分頁算法中分開每頁的參照物。在這里,我們可以用操作符“>”或“<”號來完成這個使命,使查詢語句符合SARG形式。如:

Select top 10 * from table1 where id>200

  于是就有了如下分頁方案:

select top 頁大小 *

from table1 

where id>

      (select max (id) from 

      (select top ((頁碼-1)*頁大小) id from table1 order by id) as T

       )     

  order by id

  在選擇即不重復(fù)值,又容易分辨大小的列時,我們通常會選擇主鍵。下表列出了筆者用有著1000萬數(shù)據(jù)的辦公自動化系統(tǒng)中的表,在以GID(GID是主鍵,但并不是聚集索引。)為排序列、提取gid,fariqi,title字段,分別以第1、10、100、500、1000、1萬、10萬、25萬、50萬頁為例,測試以上三種分頁方案的執(zhí)行速度:(單位:毫秒)

頁  碼
 方案1
 方案2
 方案3
 
1
 60
 30
 76
 
10
 46
 16
 63
 
100
 1076
 720
 130
 
500
 540
 12943
 83
 
1000
 17110
 470
 250
 
1萬
 24796
 4500
 140
 
10萬
 38326
 42283
 1553
 
25萬
 28140
 128720
 2330
 
50萬
 121686
 127846
 7168
 

  從上表中,我們可以看出,三種存儲過程在執(zhí)行100頁以下的分頁命令時,都是可以信任的,速度都很好。但第一種方案在執(zhí)行分頁1000頁以上后,速度就降了下來。第二種方案大約是在執(zhí)行分頁1萬頁以上后速度開始降了下來。而第三種方案卻始終沒有大的降勢,后勁仍然很足。

  在確定了第三種分頁方案后,我們可以據(jù)此寫一個存儲過程。大家知道SQL SERVER的存儲過程是事先編譯好的SQL語句,它的執(zhí)行效率要比通過WEB頁面?zhèn)鱽淼腟QL語句的執(zhí)行效率要高。下面的存儲過程不僅含有分頁方案,還會根據(jù)頁面?zhèn)鱽淼膮?shù)來確定是否進(jìn)行數(shù)據(jù)總數(shù)統(tǒng)計。

-- 獲取指定頁的數(shù)據(jù)

CREATE PROCEDURE pagination3

@tblName   varchar(255),       -- 表名

@strGetFields varchar(1000) = ‘*‘,  -- 需要返回的列 

@fldName varchar(255)=‘‘,      -- 排序的字段名

@PageSize   int = 10,          -- 頁尺寸

@PageIndex  int = 1,           -- 頁碼

@doCount  bit = 0,   -- 返回記錄總數(shù), 非 0 值則返回

@OrderType bit = 0,  -- 設(shè)置排序類型, 非 0 值則降序

@strWhere  varchar(1500) = ‘‘  -- 查詢條件 (注意: 不要加 where)

AS

declare @strSQL   varchar(5000)       -- 主語句

declare @strTmp   varchar(110)        -- 臨時變量

declare @strOrder varchar(400)        -- 排序類型

 

if @doCount != 0

  begin

    if @strWhere !=‘‘

    set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere

    else

    set @strSQL = "select count(*) as Total from [" + @tblName + "]"

end  

--以上代碼的意思是如果@doCount傳遞過來的不是0,就執(zhí)行總數(shù)統(tǒng)計。以下的所有代碼都是@doCount為0的情況

else

begin

 

if @OrderType != 0

begin

    set @strTmp = "<(select min"

set @strOrder = " order by [" + @fldName +"] desc"

--如果@OrderType不是0,就執(zhí)行降序,這句很重要!

end

else

begin

    set @strTmp = ">(select max"

    set @strOrder = " order by [" + @fldName +"] asc"

end

 

if @PageIndex = 1

begin

    if @strWhere != ‘‘   

    set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from [" + @tblName + "] where " + @strWhere + " " + @strOrder

     else

     set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["+ @tblName + "] "+ @strOrder

--如果是第一頁就執(zhí)行以上代碼,這樣會加快執(zhí)行速度

end

else

begin

--以下代碼賦予了@strSQL以真正執(zhí)行的SQL代碼

set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["

    + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder

 

if @strWhere != ‘‘

    set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "  from ["

        + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["

        + @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["

        + @fldName + "] from [" + @tblName + "] where " + @strWhere + " "

        + @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder

end 

end   

exec (@strSQL)

GO

  上面的這個存儲過程是一個通用的存儲過程,其注釋已寫在其中了。

  在大數(shù)據(jù)量的情況下,特別是在查詢最后幾頁的時候,查詢時間一般不會超過9秒;而用其他存儲過程,在實踐中就會導(dǎo)致超時,所以這個存儲過程非常適用于大容量數(shù)據(jù)庫的查詢。

  筆者希望能夠通過對以上存儲過程的解析,能給大家?guī)硪欢ǖ膯⑹?并給工作帶來一定的效率提升,同時希望同行提出更優(yōu)秀的實時數(shù)據(jù)分頁算法。

四、聚集索引的重要性和如何選擇聚集索引

  在上一節(jié)的標(biāo)題中,筆者寫的是:實現(xiàn)小數(shù)據(jù)量和海量數(shù)據(jù)的通用分頁顯示存儲過程。這是因為在將本存儲過程應(yīng)用于“辦公自動化”系統(tǒng)的實踐中時,筆者發(fā)現(xiàn)這第三種存儲過程在小數(shù)據(jù)量的情況下,有如下現(xiàn)象:

  1、分頁速度一般維持在1秒和3秒之間。

  2、在查詢最后一頁時,速度一般為5秒至8秒,哪怕分頁總數(shù)只有3頁或30萬頁。

  雖然在超大容量情況下,這個分頁的實現(xiàn)過程是很快的,但在分前幾頁時,這個1-3秒的速度比起第一種甚至沒有經(jīng)過優(yōu)化的分頁方法速度還要慢,借用戶的話說就是“還沒有ACCESS數(shù)據(jù)庫速度快”,這個認(rèn)識足以導(dǎo)致用戶放棄使用您開發(fā)的系統(tǒng)。

  筆者就此分析了一下,原來產(chǎn)生這種現(xiàn)象的癥結(jié)是如此的簡單,但又如此的重要:排序的字段不是聚集索引!

  本篇文章的題目是:“查詢優(yōu)化及分頁算法方案”。筆者只所以把“查詢優(yōu)化”和“分頁算法”這兩個聯(lián)系不是很大的論題放在一起,就是因為二者都需要一個非常重要的東西――聚集索引。

  在前面的討論中我們已經(jīng)提到了,聚集索引有兩個最大的優(yōu)勢:

  1、以最快的速度縮小查詢范圍。

  2、以最快的速度進(jìn)行字段排序。

  第1條多用在查詢優(yōu)化時,而第2條多用在進(jìn)行分頁時的數(shù)據(jù)排序。

  而聚集索引在每個表內(nèi)又只能建立一個,這使得聚集索引顯得更加的重要。聚集索引的挑選可以說是實現(xiàn)“查詢優(yōu)化”和“高效分頁”的最關(guān)鍵因素。

  但要既使聚集索引列既符合查詢列的需要,又符合排序列的需要,這通常是一個矛盾。

  筆者前面“索引”的討論中,將fariqi,即用戶發(fā)文日期作為了聚集索引的起始列,日期的精確度為“日”。這種作法的優(yōu)點,前面已經(jīng)提到了,在進(jìn)行劃時間段的快速查詢中,比用ID主鍵列有很大的優(yōu)勢。

  但在分頁時,由于這個聚集索引列存在著重復(fù)記錄,所以無法使用max或min來最為分頁的參照物,進(jìn)而無法實現(xiàn)更為高效的排序。而如果將ID主鍵列作為聚集索引,那么聚集索引除了用以排序之外,沒有任何用處,實際上是浪費了聚集索引這個寶貴的資源。

   為解決這個矛盾,筆者后來又添加了一個日期列,其默認(rèn)值為getdate()。用戶在寫入記錄時,這個列自動寫入當(dāng)時的時間,時間精確到毫秒。即使這樣,為了避免可能性很小的重合,還要在此列上創(chuàng)建UNIQUE約束。將此日期列作為聚集索引列。

  有了這個時間型聚集索引列之后,用戶就既可以用這個列查找用戶在插入數(shù)據(jù)時的某個時間段的查詢,又可以作為唯一列來實現(xiàn)max或min,成為分頁算法的參照物。

  經(jīng)過這樣的優(yōu)化,筆者發(fā)現(xiàn),無論是大數(shù)據(jù)量的情況下還是小數(shù)據(jù)量的情況下,分頁速度一般都是幾十毫秒,甚至0毫秒。而用日期段縮小范圍的查詢速度比原來也沒有任何遲鈍。

  聚集索引是如此的重要和珍貴,所以筆者總結(jié)了一下,一定要將聚集索引建立在:

  1、您最頻繁使用的、用以縮小查詢范圍的字段上;

  2、您最頻繁使用的、需要排序的字段上。

  結(jié)束語:

  本篇文章匯集了筆者近段在使用數(shù)據(jù)庫方面的心得,是在做“辦公自動化”系統(tǒng)時實踐經(jīng)驗的積累。希望這篇文章不僅能夠給大家的工作帶來一定的幫助,也希望能讓大家能夠體會到分析問題的方法;最重要的是,希望這篇文章能夠拋磚引玉,掀起大家的學(xué)習(xí)和討論的興趣,以共同促進(jìn),共同為公安科技強警事業(yè)和金盾工程做出自己最大的努力。

  最后需要說明的是,在試驗中,我發(fā)現(xiàn)用戶在進(jìn)行大數(shù)據(jù)量查詢的時候,對數(shù)據(jù)庫速度影響最大的不是內(nèi)存大小,而是CPU。在我的P4 2.4機器上試驗的時候,查看“資源管理器”,CPU經(jīng)常出現(xiàn)持續(xù)到100%的現(xiàn)象,而內(nèi)存用量卻并沒有改變或者說沒有大的改變。即使在我們的HP ML 350 G3服務(wù)器上試驗時,CPU峰值也能達(dá)到90%,一般持續(xù)在70%左右。

  本文的試驗數(shù)據(jù)都是來自我們的HP ML 350服務(wù)器。服務(wù)器配置:雙Inter Xeon 超線程 CPU 2.4G,內(nèi)存1G,操作系統(tǒng)Windows Server 2003 Enterprise Edition,數(shù)據(jù)庫SQL Server 2000 SP3。
本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
深入淺出理解索引結(jié)構(gòu)
海量數(shù)據(jù)庫的查詢優(yōu)化及分頁算法方案
常用SQL語句書寫技巧 - SQL Server - 數(shù)據(jù)庫 - 程序員之家
sql-索引的作用(超詳細(xì))
SQLSERVER2008R2 索引建立的幾點建議
mssql 技術(shù) 查連接
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服