国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
深入淺出Win32多線程程序設(shè)計(jì)

從單進(jìn)程單線程到多進(jìn)程多線程是操作系統(tǒng)發(fā)展的一種必然趨勢(shì),當(dāng)年的DOS系統(tǒng)屬于單任務(wù)操作系統(tǒng),最優(yōu)秀的程序員也只能通過駐留內(nèi)存的方式實(shí)現(xiàn)所謂的"多任務(wù)",而如今的Win32操作系統(tǒng)卻可以一邊聽音樂,一邊編程,一邊打印文檔。
  理解多線程及其同步、互斥等通信方式是理解現(xiàn)代操作系統(tǒng)的關(guān)鍵一環(huán),當(dāng)我們精通了Win32多線程程序設(shè)計(jì)后,理解和學(xué)習(xí)其它操作系統(tǒng)的多任務(wù)控制也非常容易。因此,學(xué)習(xí)Win32多線程不僅對(duì)理解Win32本身有重要意義,而且對(duì)學(xué)習(xí)和領(lǐng)會(huì)其它操作系統(tǒng)也有觸類旁通的作用。


深入淺出Win32多線程程序設(shè)計(jì)之基本概念

引言

  從單進(jìn)程單線程到多進(jìn)程多線程是操作系統(tǒng)發(fā)展的一種必然趨勢(shì),當(dāng)年的DOS系統(tǒng)屬于單任務(wù)操作系統(tǒng),最優(yōu)秀的程序員也只能通過駐留內(nèi)存的方式實(shí)現(xiàn)所謂的"多任務(wù)",而如今的Win32操作系統(tǒng)卻可以一邊聽音樂,一邊編程,一邊打印文檔。

  理解多線程及其同步、互斥等通信方式是理解現(xiàn)代操作系統(tǒng)的關(guān)鍵一環(huán),當(dāng)我們精通了Win32多線程程序設(shè)計(jì)后,理解和學(xué)習(xí)其它操作系統(tǒng)的多任務(wù)控制也非常容易。許多程序員從來沒有學(xué)習(xí)過嵌入式系統(tǒng)領(lǐng)域著名的操作系統(tǒng)VxWorks,但是立馬就能在上面做開發(fā),大概要?dú)w功于平時(shí)在Win32多線程上下的功夫。

  因此,學(xué)習(xí)Win32多線程不僅對(duì)理解Win32本身有重要意義,而且對(duì)學(xué)習(xí)和領(lǐng)會(huì)其它操作系統(tǒng)也有觸類旁通的作用。

  進(jìn)程與線程


  先闡述一下進(jìn)程和線程的概念和區(qū)別,這是一個(gè)許多大學(xué)老師也講不清楚的問題。

  進(jìn)程(Process)是具有一定獨(dú)立功能的程序關(guān)于某個(gè)數(shù)據(jù)集合上的一次運(yùn)行活動(dòng),是系統(tǒng)進(jìn)行資源分配和調(diào)度的一個(gè)獨(dú)立單位。程序只是一組指令的有序集合,它本身沒有任何運(yùn)行的含義,只是一個(gè)靜態(tài)實(shí)體。而進(jìn)程則不同,它是程序在某個(gè)數(shù)據(jù)集上的執(zhí)行,是一個(gè)動(dòng)態(tài)實(shí)體。它因創(chuàng)建而產(chǎn)生,因調(diào)度而運(yùn)行,因等待資源或事件而被處于等待狀態(tài),因完成任務(wù)而被撤消,反映了一個(gè)程序在一定的數(shù)據(jù)集上運(yùn)行的全部動(dòng)態(tài)過程。

  線程(Thread)是進(jìn)程的一個(gè)實(shí)體,是CPU調(diào)度和分派的基本單位。線程不能夠獨(dú)立執(zhí)行,必須依存在應(yīng)用程序中,由應(yīng)用程序提供多個(gè)線程執(zhí)行控制。

  線程和進(jìn)程的關(guān)系是:線程是屬于進(jìn)程的,線程運(yùn)行在進(jìn)程空間內(nèi),同一進(jìn)程所產(chǎn)生的線程共享同一內(nèi)存空間,當(dāng)進(jìn)程退出時(shí)該進(jìn)程所產(chǎn)生的線程都會(huì)被強(qiáng)制退出并清除。線程可與屬于同一進(jìn)程的其它線程共享進(jìn)程所擁有的全部資源,但是其本身基本上不擁有系統(tǒng)資源,只擁有一點(diǎn)在運(yùn)行中必不可少的信息(如程序計(jì)數(shù)器、一組寄存器和棧)。



  根據(jù)進(jìn)程與線程的設(shè)置,操作系統(tǒng)大致分為如下類型:

 ?。?)單進(jìn)程、單線程,MS-DOS大致是這種操作系統(tǒng);

 ?。?)多進(jìn)程、單線程,多數(shù)UNIX(及類UNIX的LINUX)是這種操作系統(tǒng);

 ?。?)多進(jìn)程、多線程,Win32(Windows NT/2000/XP等)、Solaris 2.x和OS/2都是這種操作系統(tǒng);

 ?。?)單進(jìn)程、多線程,VxWorks是這種操作系統(tǒng)。

  在操作系統(tǒng)中引入線程帶來的主要好處是:

 ?。?)在進(jìn)程內(nèi)創(chuàng)建、終止線程比創(chuàng)建、終止進(jìn)程要快;

 ?。?)同一進(jìn)程內(nèi)的線程間切換比進(jìn)程間的切換要快,尤其是用戶級(jí)線程間的切換。另外,線程的出現(xiàn)還因?yàn)橐韵聨讉€(gè)原因:

 ?。?)并發(fā)程序的并發(fā)執(zhí)行,在多處理環(huán)境下更為有效。一個(gè)并發(fā)程序可以建立一個(gè)進(jìn)程,而這個(gè)并發(fā)程序中的若干并發(fā)程序段就可以分別建立若干線程,使這些線程在不同的處理機(jī)上執(zhí)行。

  (2)每個(gè)進(jìn)程具有獨(dú)立的地址空間,而該進(jìn)程內(nèi)的所有線程共享該地址空間。這樣可以解決父子進(jìn)程模型中,子進(jìn)程必須復(fù)制父進(jìn)程地址空間的問題。

 ?。?)線程對(duì)解決客戶/服務(wù)器模型非常有效。

  Win32進(jìn)程

  1、進(jìn)程間通信(IPC)

  Win32進(jìn)程間通信的方式主要有:

 ?。?)剪貼板(Clip Board);

 ?。?)動(dòng)態(tài)數(shù)據(jù)交換(Dynamic Data Exchange);

 ?。?)部件對(duì)象模型(Component Object Model);

 ?。?)文件映射(File Mapping);

  (5)郵件槽(Mail Slots);

 ?。?)管道(Pipes);

  (7)Win32套接字(Socket);

  (8)遠(yuǎn)程過程調(diào)用(Remote Procedure Call);

  (9)WM_COPYDATA消息(WM_COPYDATA Message)。

  2、獲取進(jìn)程信息

  在WIN32中,可使用在PSAPI .DLL中提供的Process status Helper函數(shù)幫助我們獲取進(jìn)程信息。

 ?。?)EnumProcesses()函數(shù)可以獲取進(jìn)程的ID,其原型為:

BOOL EnumProcesses(DWORD * lpidProcess, DWORD cb, DWORD*cbNeeded);

  參數(shù)lpidProcess:一個(gè)足夠大的DWORD類型的數(shù)組,用于存放進(jìn)程的ID值;

  參數(shù)cb:存放進(jìn)程ID值的數(shù)組的最大長度,是一個(gè)DWORD類型的數(shù)據(jù);

  參數(shù)cbNeeded:指向一個(gè)DWORD類型數(shù)據(jù)的指針,用于返回進(jìn)程的數(shù)目;

  函數(shù)返回值:如果調(diào)用成功,返回TRUE,同時(shí)將所有進(jìn)程的ID值存放在lpidProcess參數(shù)所指向的數(shù)組中,進(jìn)程個(gè)數(shù)存放在cbNeeded參數(shù)所指向的變量中;如果調(diào)用失敗,返回FALSE。

 ?。?)GetModuleFileNameExA()函數(shù)可以實(shí)現(xiàn)通過進(jìn)程句柄獲取進(jìn)程文件名,其原型為:

DWORD GetModuleFileNameExA(HANDLE hProcess, HMODULE hModule,LPTSTR lpstrFileName, DWORD nsize);

  參數(shù)hProcess:接受進(jìn)程句柄的參數(shù),是HANDLE類型的變量;

  參數(shù)hModule:指針型參數(shù),在本文的程序中取值為NULL;

  參數(shù)lpstrFileName:LPTSTR類型的指針,用于接受主調(diào)函數(shù)傳遞來的用于存放進(jìn)程名的字符數(shù)組指針;

  參數(shù)nsize:lpstrFileName所指數(shù)組的長度;

  函數(shù)返回值:如果調(diào)用成功,返回一個(gè)大于0的DWORD類型的數(shù)據(jù),同時(shí)將hProcess所對(duì)應(yīng)的進(jìn)程名存放在lpstrFileName參數(shù)所指向的數(shù)組中;加果調(diào)用失敗,則返回0。

  通過下列代碼就可以遍歷系統(tǒng)中的進(jìn)程,獲得進(jìn)程列表:

     //獲取當(dāng)前進(jìn)程總數(shù)
EnumProcesses(process_ids, sizeof(process_ids), &num_processes);
//遍歷進(jìn)程
for (int i = 0; i < num_processes; i++)
{
 //根據(jù)進(jìn)程ID獲取句柄 
 process[i] = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, 0,
 process_ids[i]);
  //通過句柄獲取進(jìn)程文件名
  if (GetModuleFileNameExA(process[i], NULL, File_name, sizeof(fileName)))
   cout << fileName << endl;
}

Win32線程

  WIN32靠線程的優(yōu)先級(jí)(達(dá)到搶占式多任務(wù)的目的)及分配給線程的CPU時(shí)間來調(diào)度線程。WIN32本身的許多應(yīng)用程序也利用了多線程的特性,如任務(wù)管理器等。

  本質(zhì)而言,一個(gè)處理器同一時(shí)刻只能執(zhí)行一個(gè)線程("微觀串行")。WIN32多任務(wù)機(jī)制使得CPU好像在同時(shí)處理多個(gè)任務(wù)一樣,實(shí)現(xiàn)了"宏觀并行"。其多線程調(diào)度的機(jī)制為:

 ?。?)運(yùn)行一個(gè)線程,直到被中斷或線程必須等待到某個(gè)資源可用;

  (2)保存當(dāng)前執(zhí)行線程的描述表(上下文);

  (3)裝入下一執(zhí)行線程的描述表(上下文);

 ?。?)若存在等待被執(zhí)行的線程,則重復(fù)上述過程。

  WIN32下的線程可能具有不同的優(yōu)先級(jí),優(yōu)先級(jí)的范圍為0~31,共32級(jí),其中31表示最高優(yōu)先級(jí),優(yōu)先級(jí)0為系統(tǒng)保留。它們可以分成兩類,即實(shí)時(shí)優(yōu)先級(jí)和可變優(yōu)先級(jí):

 ?。?)實(shí)時(shí)優(yōu)先級(jí)從16到31,是實(shí)時(shí)程序所用的高優(yōu)先級(jí)線程,如許多監(jiān)控類應(yīng)用程序;

 ?。?)可變優(yōu)先級(jí)從1到15,絕大多數(shù)程序的優(yōu)先級(jí)都在這個(gè)范圍內(nèi)。。WIN32調(diào)度器為了優(yōu)化系統(tǒng)響應(yīng)時(shí)間,在它們執(zhí)行過程中可動(dòng)態(tài)調(diào)整它們的優(yōu)先級(jí)。

  多線程確實(shí)給應(yīng)用開發(fā)帶來了許多好處,但并非任何情況下都要使用多線程,一定要根據(jù)應(yīng)用程序的具體情況來綜合考慮。一般來說,在以下情況下可以考慮使用多線程:

 ?。?)應(yīng)用程序中的各任務(wù)相對(duì)獨(dú)立;

 ?。?)某些任務(wù)耗時(shí)較多;

 ?。?)各任務(wù)需要有不同的優(yōu)先級(jí)。

  另外,對(duì)于一些實(shí)時(shí)系統(tǒng)應(yīng)用,應(yīng)考慮多線程。

  Win32核心對(duì)象

  WIN32核心對(duì)象包括進(jìn)程、線程、文件、事件、信號(hào)量、互斥體和管道,核心對(duì)象可能有不只一個(gè)擁有者,甚至可以跨進(jìn)程。有一組WIN32 API與核心對(duì)象息息相關(guān):

 ?。?)WaitForSingleObject,用于等待對(duì)象的"激活",其函數(shù)原型為:

DWORD WaitForSingleObject(
 HANDLE hHandle, // 等待對(duì)象的句柄
 DWORD dwMilliseconds // 等待毫秒數(shù),INFINITE表示無限等待
);

  可以作為WaitForSingleObject第一個(gè)參數(shù)的對(duì)象包括:Change notification、Console input、Event、Job、Memory resource notification、Mutex、Process、Semaphore、Thread和Waitable timer。

  如果等待的對(duì)象不可用,那么線程就會(huì)掛起,直到對(duì)象可用線程才會(huì)被喚醒。對(duì)不同的對(duì)象,WaitForSingleObject表現(xiàn)為不同的含義。例如,使用WaitForSingleObject(hThread,…)可以判斷一個(gè)線程是否結(jié)束;使用WaitForSingleObject(hMutex,…)可以判斷是否能夠進(jìn)入臨界區(qū);而WaitForSingleObject (hProcess,… )則表現(xiàn)為等待一個(gè)進(jìn)程的結(jié)束。

  與WaitForSingleObject對(duì)應(yīng)還有一個(gè)WaitForMultipleObjects函數(shù),可以用于等待多個(gè)對(duì)象,其原型為:

DWORD WaitForMultipleObjects(DWORD nCount,const HANDLE* pHandles,BOOL bWaitAll,DWORD dwMilliseconds);

  (2)CloseHandle,用于關(guān)閉對(duì)象,其函數(shù)原型為:

BOOL CloseHandle(HANDLE hObject);

  如果函數(shù)執(zhí)行成功,則返回TRUE;否則返回FALSE,我們可以通過GetLastError函數(shù)進(jìn)一步可以獲得錯(cuò)誤原因。

  C運(yùn)行時(shí)庫

  在VC++6.0中,有兩種多線程編程方法:一是使用C運(yùn)行時(shí)庫及WIN32 API函數(shù),另一種方法是使用MFC,MFC對(duì)多線程開發(fā)有強(qiáng)大的支持。
標(biāo)準(zhǔn)C運(yùn)行時(shí)庫是1970年問世的,當(dāng)時(shí)還沒有多線程的概念。因此,C運(yùn)行時(shí)庫早期的設(shè)計(jì)者們不可能考慮到讓其支持多線程應(yīng)用程序。
Visual C++提供了兩種版本的C運(yùn)行時(shí)庫,-個(gè)版本供單線程應(yīng)用程序調(diào)用,另一個(gè)版本供多線程應(yīng)用程序調(diào)用。多線程運(yùn)行時(shí)庫與單線程運(yùn)行時(shí)庫有兩個(gè)重大差別:

  (1)類似errno的全局變量,每個(gè)線程單獨(dú)設(shè)置一個(gè);

  這樣從每個(gè)線程中可以獲取正確的錯(cuò)誤信息。

  (2)多線程庫中的數(shù)據(jù)結(jié)構(gòu)以同步機(jī)制加以保護(hù)。

  這樣可以避免訪問時(shí)候的沖突。

  Visual C++提供的多線程運(yùn)行時(shí)庫又分為靜態(tài)鏈接庫和動(dòng)態(tài)鏈接庫兩類,而每一類運(yùn)行時(shí)庫又可再分為debug版和release版,因此Visual C++共提供了6個(gè)運(yùn)行時(shí)庫。如下表:

C運(yùn)行時(shí)庫庫文件
Single thread(static link)libc.lib
Debug single thread(static link)Libcd.lib
MultiThread(static link)libcmt.lib
Debug multiThread(static link)libcmtd.lib
MultiThread(dynamic link)msvert.lib
Debug multiThread(dynamic link)msvertd.lib

  如果不使用VC多線程C運(yùn)行時(shí)庫來生成多線程程序,必須執(zhí)行下列操作:

 ?。?)使用標(biāo)準(zhǔn) C 庫(基于單線程)并且只允許可重入函數(shù)集進(jìn)行庫調(diào)用;

 ?。?)使用 Win32 API 線程管理函數(shù),如 CreateThread;

  (3)通過使用 Win32 服務(wù)(如信號(hào)量和 EnterCriticalSection 及 LeaveCriticalSection 函數(shù)),為不可重入的函數(shù)提供自己的同步。

  如果使用標(biāo)準(zhǔn) C 庫而調(diào)用VC運(yùn)行時(shí)庫函數(shù),則在程序的link階段會(huì)提示如下錯(cuò)誤:

error LNK2001: unresolved external symbol __endthreadex
error LNK2001: unresolved external symbol __beginthreadex
深入淺出Win32多線程程序設(shè)計(jì)之線程控制

WIN32線程控制主要實(shí)現(xiàn)線程的創(chuàng)建、終止、掛起和恢復(fù)等操作,這些操作都依賴于WIN32提供的一組API和具體編譯器的C運(yùn)行時(shí)庫函數(shù)。

  1.線程函數(shù)

  在啟動(dòng)一個(gè)線程之前,必須為線程編寫一個(gè)全局的線程函數(shù),這個(gè)線程函數(shù)接受一個(gè)32位的LPVOID作為參數(shù),返回一個(gè)UINT,線程函數(shù)的結(jié)構(gòu)為:

UINT ThreadFunction(LPVOID pParam)
{
 //線程處理代碼
 return0;
}

  在線程處理代碼部分通常包括一個(gè)死循環(huán),該循環(huán)中先等待某事情的發(fā)生,再處理相關(guān)的工作:

while(1)
{
 WaitForSingleObject(…,…);//或WaitForMultipleObjects(…)
 //Do something
}

  一般來說,C++的類成員函數(shù)不能作為線程函數(shù)。這是因?yàn)樵陬愔卸x的成員函數(shù),編譯器會(huì)給其加上this指針。請(qǐng)看下列程序:

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void taskmain(LPVOID param);
  void StartTask();
};
void ExampleTask::taskmain(LPVOID param)
{}

void ExampleTask::StartTask()
{
 _beginthread(taskmain,0,NULL);
}

int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 realTimeTask.StartTask();
 return 0;
}

  程序編譯時(shí)出現(xiàn)如下錯(cuò)誤:

error C2664: '_beginthread' : cannot convert parameter 1 from 'void (void *)' to 'void (__cdecl *)(void *)'
None of the functions with this name in scope match the target type

  再看下列程序:

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void taskmain(LPVOID param);
};

void ExampleTask::taskmain(LPVOID param)
{}

int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 _beginthread(ExampleTask::taskmain,0,NULL);
 return 0;
}

  程序編譯時(shí)會(huì)出錯(cuò):

error C2664: '_beginthread' : cannot convert parameter 1 from 'void (void *)' to 'void (__cdecl *)(void *)'
None of the functions with this name in scope match the target type

  如果一定要以類成員函數(shù)作為線程函數(shù),通常有如下解決方案:

 ?。?)將該成員函數(shù)聲明為static類型,去掉this指針;

  我們將上述二個(gè)程序改變?yōu)椋?br>
#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void static taskmain(LPVOID param);
  void StartTask();
};

void ExampleTask::taskmain(LPVOID param)
{}

void ExampleTask::StartTask()
{
 _beginthread(taskmain,0,NULL);
}

int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 realTimeTask.StartTask();
 return 0;
}

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  void static taskmain(LPVOID param);
};

void ExampleTask::taskmain(LPVOID param)
{}

int main(int argc, char* argv[])
{
 _beginthread(ExampleTask::taskmain,0,NULL);
 return 0;
}

  均編譯通過。

  將成員函數(shù)聲明為靜態(tài)雖然可以解決作為線程函數(shù)的問題,但是它帶來了新的問題,那就是static成員函數(shù)只能訪問static成員。解決此問題的一種途徑是可以在調(diào)用類靜態(tài)成員函數(shù)(線程函數(shù))時(shí)將this指針作為參數(shù)傳入,并在改線程函數(shù)中用強(qiáng)制類型轉(zhuǎn)換將this轉(zhuǎn)換成指向該類的指針,通過該指針訪問非靜態(tài)成員。

  (2)不定義類成員函數(shù)為線程函數(shù),而將線程函數(shù)定義為類的友元函數(shù)。這樣,線程函數(shù)也可以有類成員函數(shù)同等的權(quán)限;

  我們將程序修改為:

#include "windows.h"
#include <process.h>
class ExampleTask
{
 public:
  friend void taskmain(LPVOID param);
  void StartTask();
};

void taskmain(LPVOID param)
{
 ExampleTask * pTaskMain = (ExampleTask *) param;
 //通過pTaskMain指針引用
}

void ExampleTask::StartTask()
{
 _beginthread(taskmain,0,this);
}
int main(int argc, char* argv[])
{
 ExampleTask realTimeTask;
 realTimeTask.StartTask();
 return 0;
}
(3)可以對(duì)非靜態(tài)成員函數(shù)實(shí)現(xiàn)回調(diào),并訪問非靜態(tài)成員,此法涉及到一些高級(jí)技巧,在此不再詳述。

2.創(chuàng)建線程

  進(jìn)程的主線程由操作系統(tǒng)自動(dòng)生成,Win32提供了CreateThread API來完成用戶線程的創(chuàng)建,該API的原型為:

HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpThreadAttributes,//Pointer to a SECURITY_ATTRIBUTES structure
 SIZE_T dwStackSize, //Initial size of the stack, in bytes.
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter, //Pointer to a variable to be passed to the thread
 DWORD dwCreationFlags, //Flags that control the creation of the thread
 LPDWORD lpThreadId //Pointer to a variable that receives the thread identifier
);

  如果使用C/C++語言編寫多線程應(yīng)用程序,一定不能使用操作系統(tǒng)提供的CreateThread API,而應(yīng)該使用C/C++運(yùn)行時(shí)庫中的_beginthread(或_beginthreadex),其函數(shù)原型為:

uintptr_t _beginthread(
 void( __cdecl *start_address )( void * ), //Start address of routine that begins execution of new thread
 unsigned stack_size, //Stack size for new thread or 0.
 void *arglist //Argument list to be passed to new thread or NULL
);
uintptr_t _beginthreadex(
 void *security,//Pointer to a SECURITY_ATTRIBUTES structure
 unsigned stack_size,
 unsigned ( __stdcall *start_address )( void * ),
 void *arglist,
 unsigned initflag,//Initial state of new thread (0 for running or CREATE_SUSPENDED for suspended);
 unsigned *thrdaddr
);

  _beginthread函數(shù)與Win32 API 中的CreateThread函數(shù)類似,但有如下差異:

 ?。?)通過_beginthread函數(shù)我們可以利用其參數(shù)列表arglist將多個(gè)參數(shù)傳遞到線程;

  (2)_beginthread 函數(shù)初始化某些 C 運(yùn)行時(shí)庫變量,在線程中若需要使用 C 運(yùn)行時(shí)庫。

  3.終止線程

  線程的終止有如下四種方式:

  (1)線程函數(shù)返回;

 ?。?)線程自身調(diào)用ExitThread 函數(shù)即終止自己,其原型為:

VOID ExitThread(UINT fuExitCode );

  它將參數(shù)fuExitCode設(shè)置為線程的退出碼。

  注意:如果使用C/C++編寫代碼,我們應(yīng)該使用C/C++運(yùn)行時(shí)庫函數(shù)_endthread (_endthreadex)終止線程,決不能使用ExitThread!
_endthread 函數(shù)對(duì)于線程內(nèi)的條件終止很有用。例如,專門用于通信處理的線程若無法獲取對(duì)通信端口的控制,則會(huì)退出。

 ?。?)同一進(jìn)程或其他進(jìn)程的線程調(diào)用TerminateThread函數(shù),其原型為:

BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);

  該函數(shù)用來結(jié)束由hThread參數(shù)指定的線程,并把dwExitCode設(shè)成該線程的退出碼。當(dāng)某個(gè)線程不再響應(yīng)時(shí),我們可以用其他線程調(diào)用該函數(shù)來終止這個(gè)不響應(yīng)的線程。

 ?。?)包含線程的進(jìn)程終止。

  最好使用第1種方式終止線程,第2~4種方式都不宜采用。

  4.掛起與恢復(fù)線程

  當(dāng)我們創(chuàng)建線程的時(shí)候,如果給其傳入CREATE_SUSPENDED標(biāo)志,則該線程創(chuàng)建后被掛起,我們應(yīng)使用ResumeThread恢復(fù)它:

DWORD ResumeThread(HANDLE hThread);

  如果ResumeThread函數(shù)運(yùn)行成功,它將返回線程的前一個(gè)暫停計(jì)數(shù),否則返回0x FFFFFFFF。

  對(duì)于沒有被掛起的線程,程序員可以調(diào)用SuspendThread函數(shù)強(qiáng)行掛起之:

DWORD SuspendThread(HANDLE hThread);

  一個(gè)線程可以被掛起多次。線程可以自行暫停運(yùn)行,但是不能自行恢復(fù)運(yùn)行。如果一個(gè)線程被掛起n次,則該線程也必須被恢復(fù)n次才可能得以執(zhí)行。

5.設(shè)置線程優(yōu)先級(jí)

  當(dāng)一個(gè)線程被首次創(chuàng)建時(shí),它的優(yōu)先級(jí)等同于它所屬進(jìn)程的優(yōu)先級(jí)。在單個(gè)進(jìn)程內(nèi)可以通過調(diào)用SetThreadPriority函數(shù)改變線程的相對(duì)優(yōu)先級(jí)。一個(gè)線程的優(yōu)先級(jí)是相對(duì)于其所屬進(jìn)程的優(yōu)先級(jí)而言的。

BOOL SetThreadPriority(HANDLE hThread, int nPriority);

  其中參數(shù)hThread是指向待修改優(yōu)先級(jí)線程的句柄,線程與包含它的進(jìn)程的優(yōu)先級(jí)關(guān)系如下:

   線程優(yōu)先級(jí) = 進(jìn)程類基本優(yōu)先級(jí) + 線程相對(duì)優(yōu)先級(jí)

  進(jìn)程類的基本優(yōu)先級(jí)包括:

 ?。?)實(shí)時(shí):REALTIME_PRIORITY_CLASS;

 ?。?)高:HIGH _PRIORITY_CLASS;

  (3)高于正常:ABOVE_NORMAL_PRIORITY_CLASS;

  (4)正常:NORMAL _PRIORITY_CLASS;

 ?。?)低于正常:BELOW_ NORMAL _PRIORITY_CLASS;

  (6)空閑:IDLE_PRIORITY_CLASS。

  我們從Win32任務(wù)管理器中可以直觀的看到這六個(gè)進(jìn)程類優(yōu)先級(jí),如下圖:


  線程的相對(duì)優(yōu)先級(jí)包括:

 ?。?)空閑:THREAD_PRIORITY_IDLE;

 ?。?)最低線程:THREAD_PRIORITY_LOWEST;

  (3)低于正常線程:THREAD_PRIORITY_BELOW_NORMAL;

 ?。?)正常線程:THREAD_PRIORITY_ NORMAL (缺省);

 ?。?)高于正常線程:THREAD_PRIORITY_ABOVE_NORMAL;

 ?。?)最高線程:THREAD_PRIORITY_HIGHEST;

  (7)關(guān)鍵時(shí)間:THREAD_PRIOTITY_CRITICAL。

  下圖給出了進(jìn)程優(yōu)先級(jí)和線程相對(duì)優(yōu)先級(jí)的映射關(guān)系:


  例如:

HANDLE hCurrentThread = GetCurrentThread();
//獲得該線程句柄
SetThreadPriority(hCurrentThread, THREAD_PRIORITY_LOWEST);

  6.睡眠

VOID Sleep(DWORD dwMilliseconds);

  該函數(shù)可使線程暫停自己的運(yùn)行,直到dwMilliseconds毫秒過去為止。它告訴系統(tǒng),自身不想在某個(gè)時(shí)間段內(nèi)被調(diào)度。

  7.其它重要API

  獲得線程優(yōu)先級(jí)

  一個(gè)線程被創(chuàng)建時(shí),就會(huì)有一個(gè)默認(rèn)的優(yōu)先級(jí),但是有時(shí)要?jiǎng)討B(tài)地改變一個(gè)線程的優(yōu)先級(jí),有時(shí)需獲得一個(gè)線程的優(yōu)先級(jí)。

Int GetThreadPriority (HANDLE hThread);

  如果函數(shù)執(zhí)行發(fā)生錯(cuò)誤,會(huì)返回THREAD_PRIORITY_ERROR_RETURN標(biāo)志。如果函數(shù)成功地執(zhí)行,會(huì)返回優(yōu)先級(jí)標(biāo)志。

  獲得線程退出碼

BOOL WINAPI GetExitCodeThread(
 HANDLE hThread,
 LPDWORD lpExitCode
);

  如果執(zhí)行成功,GetExitCodeThread返回TRUE,退出碼被lpExitCode指向內(nèi)存記錄;否則返回FALSE,我們可通過GetLastError()獲知錯(cuò)誤原因。如果線程尚未結(jié)束,lpExitCode帶回來的將是STILL_ALIVE。

獲得/設(shè)置線程上下文
BOOL WINAPI GetThreadContext(
 HANDLE hThread,
 LPCONTEXT lpContext
);
BOOL WINAPI SetThreadContext(
 HANDLE hThread,
 CONST CONTEXT *lpContext
);

  由于GetThreadContext和SetThreadContext可以操作CPU內(nèi)部的寄存器,因此在一些高級(jí)技巧的編程中有一定應(yīng)用。譬如,調(diào)試器可利用GetThreadContext掛起被調(diào)試線程獲取其上下文,并設(shè)置上下文中的標(biāo)志寄存器中的陷阱標(biāo)志位,最后通過SetThreadContext使設(shè)置生效來進(jìn)行單步調(diào)試。

  8.實(shí)例

  以下程序使用CreateThread創(chuàng)建兩個(gè)線程,在這兩個(gè)線程中Sleep一段時(shí)間,主線程通過GetExitCodeThread來判斷兩個(gè)線程是否結(jié)束運(yùn)行:

#define WIN32_LEAN_AND_MEAN
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <conio.h>

DWORD WINAPI ThreadFunc(LPVOID);

int main()
{
 HANDLE hThrd1;
 HANDLE hThrd2;
 DWORD exitCode1 = 0;
 DWORD exitCode2 = 0;
 DWORD threadId;

 hThrd1 = CreateThread(NULL, 0, ThreadFunc, (LPVOID)1, 0, &threadId );
 if (hThrd1)
  printf("Thread 1 launched\n");

 hThrd2 = CreateThread(NULL, 0, ThreadFunc, (LPVOID)2, 0, &threadId );
 if (hThrd2)
  printf("Thread 2 launched\n");

 // Keep waiting until both calls to GetExitCodeThread succeed AND
 // neither of them returns STILL_ACTIVE.
 for (;;)
 {
  printf("Press any key to exit..\n");
  getch();

  GetExitCodeThread(hThrd1, &exitCode1);
  GetExitCodeThread(hThrd2, &exitCode2);
  if ( exitCode1 == STILL_ACTIVE )
   puts("Thread 1 is still running!");
  if ( exitCode2 == STILL_ACTIVE )
   puts("Thread 2 is still running!");
  if ( exitCode1 != STILL_ACTIVE && exitCode2 != STILL_ACTIVE )
   break;
 }

 CloseHandle(hThrd1);
 CloseHandle(hThrd2);

 printf("Thread 1 returned %d\n", exitCode1);
 printf("Thread 2 returned %d\n", exitCode2);

 return EXIT_SUCCESS;
}

/*
* Take the startup value, do some simple math on it,
* and return the calculated value.
*/
DWORD WINAPI ThreadFunc(LPVOID n)
{
 Sleep((DWORD)n*1000*2);
 return (DWORD)n * 10;
}

  通過下面的程序我們可以看出多線程程序運(yùn)行順序的難以預(yù)料以及WINAPI的CreateThread函數(shù)與C運(yùn)行時(shí)庫的_beginthread的差別:

#define WIN32_LEAN_AND_MEAN
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>

DWORD WINAPI ThreadFunc(LPVOID);

int main()
{
 HANDLE hThrd;
 DWORD threadId;
 int i;

 for (i = 0; i < 5; i++)
 {
  hThrd = CreateThread(NULL, 0, ThreadFunc, (LPVOID)i, 0, &threadId);
  if (hThrd)
  {
   printf("Thread launched %d\n", i);
   CloseHandle(hThrd);
  }
 }
 // Wait for the threads to complete.
 Sleep(2000);

 return EXIT_SUCCESS;
}

DWORD WINAPI ThreadFunc(LPVOID n)
{
 int i;
 for (i = 0; i < 10; i++)
  printf("%d%d%d%d%d%d%d%d\n", n, n, n, n, n, n, n, n);
 return 0;
}

  運(yùn)行的輸出具有很大的隨機(jī)性,這里摘取了幾次結(jié)果的一部分(幾乎每一次都不同):


  如果我們使用標(biāo)準(zhǔn)C庫函數(shù)而不是多線程版的運(yùn)行時(shí)庫,則程序可能輸出"3333444444"這樣的結(jié)果,而使用多線程運(yùn)行時(shí)庫后,則可避免這一問題。

  下列程序在主線程中創(chuàng)建一個(gè)SecondThread,在SecondThread線程中通過自增對(duì)Counter計(jì)數(shù)到1000000,主線程一直等待其結(jié)束:

#include <Win32.h>
#include <stdio.h>
#include <process.h>

unsigned Counter;
unsigned __stdcall SecondThreadFunc(void *pArguments)
{
 printf("In second thread...\n");

 while (Counter < 1000000)
  Counter++;

 _endthreadex(0);
 return 0;
}

int main()
{
 HANDLE hThread;
 unsigned threadID;

 printf("Creating second thread...\n");

 // Create the second thread.
 hThread = (HANDLE)_beginthreadex(NULL, 0, &SecondThreadFunc, NULL, 0, &threadID);

 // Wait until second thread terminates
 WaitForSingleObject(hThread, INFINITE);
 printf("Counter should be 1000000; it is-> %d\n", Counter);
 // Destroy the thread object.
 CloseHandle(hThread);
}

深入淺出Win32多線程程序設(shè)計(jì)之線程通信 

簡(jiǎn)介

  線程之間通信的兩個(gè)基本問題是互斥和同步。

  線程同步是指線程之間所具有的一種制約關(guān)系,一個(gè)線程的執(zhí)行依賴另一個(gè)線程的消息,當(dāng)它沒有得到另一個(gè)線程的消息時(shí)應(yīng)等待,直到消息到達(dá)時(shí)才被喚醒。

  線程互斥是指對(duì)于共享的操作系統(tǒng)資源(指的是廣義的"資源",而不是Windows的.res文件,譬如全局變量就是一種共享資源),在各線程訪問時(shí)的排它性。當(dāng)有若干個(gè)線程都要使用某一共享資源時(shí),任何時(shí)刻最多只允許一個(gè)線程去使用,其它要使用該資源的線程必須等待,直到占用資源者釋放該資源。

  線程互斥是一種特殊的線程同步。

  實(shí)際上,互斥和同步對(duì)應(yīng)著線程間通信發(fā)生的兩種情況:

 ?。?)當(dāng)有多個(gè)線程訪問共享資源而不使資源被破壞時(shí);

 ?。?)當(dāng)一個(gè)線程需要將某個(gè)任務(wù)已經(jīng)完成的情況通知另外一個(gè)或多個(gè)線程時(shí)。

  在WIN32中,同步機(jī)制主要有以下幾種:

  (1)事件(Event);

 ?。?)信號(hào)量(semaphore);

 ?。?)互斥量(mutex);

 ?。?)臨界區(qū)(Critical section)。

  全局變量

  因?yàn)檫M(jìn)程中的所有線程均可以訪問所有的全局變量,因而全局變量成為Win32多線程通信的最簡(jiǎn)單方式。例如:

int var; //全局變量
UINT ThreadFunction(LPVOIDpParam)
{
 var = 0;
 while (var < MaxValue)
 {
  //線程處理
  ::InterlockedIncrement(long*) &var);
 }
 return 0;
}
請(qǐng)看下列程序:
int globalFlag = false;
DWORD WINAPI ThreadFunc(LPVOID n)
{
 Sleep(2000);
 globalFlag = true;

 return 0;
}

int main()
{
 HANDLE hThrd;
 DWORD threadId;

 hThrd = CreateThread(NULL, 0, ThreadFunc, NULL, 0, &threadId);
 if (hThrd)
 {
  printf("Thread launched\n");
  CloseHandle(hThrd);
 }

 while (!globalFlag)
 ;
 printf("exit\n");
}

  上述程序中使用全局變量和while循環(huán)查詢進(jìn)行線程間同步,實(shí)際上,這是一種應(yīng)該避免的方法,因?yàn)椋?

 ?。?)當(dāng)主線程必須使自己與ThreadFunc函數(shù)的完成運(yùn)行實(shí)現(xiàn)同步時(shí),它并沒有使自己進(jìn)入睡眠狀態(tài)。由于主線程沒有進(jìn)入睡眠狀態(tài),因此操作系統(tǒng)繼續(xù)為它調(diào)度C P U時(shí)間,這就要占用其他線程的寶貴時(shí)間周期;

 ?。?)當(dāng)主線程的優(yōu)先級(jí)高于執(zhí)行ThreadFunc函數(shù)的線程時(shí),就會(huì)發(fā)生globalFlag永遠(yuǎn)不能被賦值為true的情況。因?yàn)樵谶@種情況下,系統(tǒng)決不會(huì)將任何時(shí)間片分配給ThreadFunc線程。

  事件

  事件(Event)是WIN32提供的最靈活的線程間同步方式,事件可以處于激發(fā)狀態(tài)(signaled or true)或未激發(fā)狀態(tài)(unsignal or false)。根據(jù)狀態(tài)變遷方式的不同,事件可分為兩類:

 ?。?)手動(dòng)設(shè)置:這種對(duì)象只可能用程序手動(dòng)設(shè)置,在需要該事件或者事件發(fā)生時(shí),采用SetEvent及ResetEvent來進(jìn)行設(shè)置。

 ?。?)自動(dòng)恢復(fù):一旦事件發(fā)生并被處理后,自動(dòng)恢復(fù)到?jīng)]有事件狀態(tài),不需要再次設(shè)置。

  創(chuàng)建事件的函數(shù)原型為:

HANDLE CreateEvent(
 LPSECURITY_ATTRIBUTES lpEventAttributes,
 // SECURITY_ATTRIBUTES結(jié)構(gòu)指針,可為NULL
 BOOL bManualReset,
 // 手動(dòng)/自動(dòng)
 // TRUE:在WaitForSingleObject后必須手動(dòng)調(diào)用ResetEvent清除信號(hào)
 // FALSE:在WaitForSingleObject后,系統(tǒng)自動(dòng)清除事件信號(hào)
 BOOL bInitialState, //初始狀態(tài)
 LPCTSTR lpName //事件的名稱
);

  使用"事件"機(jī)制應(yīng)注意以下事項(xiàng):

  (1)如果跨進(jìn)程訪問事件,必須對(duì)事件命名,在對(duì)事件命名的時(shí)候,要注意不要與系統(tǒng)命名空間中的其它全局命名對(duì)象沖突;

 ?。?)事件是否要自動(dòng)恢復(fù);

 ?。?)事件的初始狀態(tài)設(shè)置。

  由于event對(duì)象屬于內(nèi)核對(duì)象,故進(jìn)程B可以調(diào)用OpenEvent函數(shù)通過對(duì)象的名字獲得進(jìn)程A中event對(duì)象的句柄,然后將這個(gè)句柄用于ResetEvent、SetEvent和WaitForMultipleObjects等函數(shù)中。此法可以實(shí)現(xiàn)一個(gè)進(jìn)程的線程控制另一進(jìn)程中線程的運(yùn)行,例如:

HANDLE hEvent=OpenEvent(EVENT_ALL_ACCESS,true,"MyEvent");
ResetEvent(hEvent);
臨界區(qū)

  定義臨界區(qū)變量

CRITICAL_SECTION gCriticalSection;

  通常情況下,CRITICAL_SECTION結(jié)構(gòu)體應(yīng)該被定義為全局變量,以便于進(jìn)程中的所有線程方便地按照變量名來引用該結(jié)構(gòu)體。

  初始化臨界區(qū)

VOID WINAPI InitializeCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
 //指向程序員定義的CRITICAL_SECTION變量
);

  該函數(shù)用于對(duì)pcs所指的CRITICAL_SECTION結(jié)構(gòu)體進(jìn)行初始化。該函數(shù)只是設(shè)置了一些成員變量,它的運(yùn)行一般不會(huì)失敗,因此它采用了VOID類型的返回值。該函數(shù)必須在任何線程調(diào)用EnterCriticalSection函數(shù)之前被調(diào)用,如果一個(gè)線程試圖進(jìn)入一個(gè)未初始化的CRTICAL_SECTION,那么結(jié)果將是很難預(yù)計(jì)的。

  刪除臨界區(qū)

VOID WINAPI DeleteCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
 //指向一個(gè)不再需要的CRITICAL_SECTION變量
);

  進(jìn)入臨界區(qū)

VOID WINAPI EnterCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
 //指向一個(gè)你即將鎖定的CRITICAL_SECTION變量
);

  離開臨界區(qū)

VOID WINAPI LeaveCriticalSection(
 LPCRITICAL_SECTION lpCriticalSection
 //指向一個(gè)你即將離開的CRITICAL_SECTION變量
);

  使用臨界區(qū)編程的一般方法是:

void UpdateData()
{
 EnterCriticalSection(&gCriticalSection);
 ...//do something
 LeaveCriticalSection(&gCriticalSection);
}

  關(guān)于臨界區(qū)的使用,有下列注意點(diǎn):

 ?。?)每個(gè)共享資源使用一個(gè)CRITICAL_SECTION變量;

 ?。?)不要長時(shí)間運(yùn)行關(guān)鍵代碼段,當(dāng)一個(gè)關(guān)鍵代碼段長時(shí)間運(yùn)行時(shí),其他線程就會(huì)進(jìn)入等待狀態(tài),這會(huì)降低應(yīng)用程序的運(yùn)行性能;

 ?。?)如果需要同時(shí)訪問多個(gè)資源,則可能連續(xù)調(diào)用EnterCriticalSection;

 ?。?)Critical Section不是OS核心對(duì)象,如果進(jìn)入臨界區(qū)的線程"掛"了,將無法釋放臨界資源。這個(gè)缺點(diǎn)在Mutex中得到了彌補(bǔ)。

  互斥

  互斥量的作用是保證每次只能有一個(gè)線程獲得互斥量而得以繼續(xù)執(zhí)行,使用CreateMutex函數(shù)創(chuàng)建:

HANDLE CreateMutex(
 LPSECURITY_ATTRIBUTES lpMutexAttributes,
 // 安全屬性結(jié)構(gòu)指針,可為NULL
 BOOL bInitialOwner,
 //是否占有該互斥量,TRUE:占有,F(xiàn)ALSE:不占有
 LPCTSTR lpName
 //信號(hào)量的名稱
);

  Mutex是核心對(duì)象,可以跨進(jìn)程訪問,下面的代碼給出了從另一進(jìn)程訪問命名Mutex的例子:

HANDLE hMutex;
hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, L"mutexName");
if (hMutex){
 …

else{
 …
}

  相關(guān)API:

BOOL WINAPI ReleaseMutex(
 HANDLE hMutex
);

  使用互斥編程的一般方法是:

void UpdateResource()
{
 WaitForSingleObject(hMutex,…);
 ...//do something
 ReleaseMutex(hMutex);
}

  互斥(mutex)內(nèi)核對(duì)象能夠確保線程擁有對(duì)單個(gè)資源的互斥訪問權(quán)。互斥對(duì)象的行為特性與臨界區(qū)相同,但是互斥對(duì)象屬于內(nèi)核對(duì)象,而臨界區(qū)則屬于用戶方式對(duì)象,因此這導(dǎo)致mutex與Critical Section的如下不同:

 ?。?) 互斥對(duì)象的運(yùn)行速度比關(guān)鍵代碼段要慢;

 ?。?) 不同進(jìn)程中的多個(gè)線程能夠訪問單個(gè)互斥對(duì)象;

  (3) 線程在等待訪問資源時(shí)可以設(shè)定一個(gè)超時(shí)值。

  下圖更詳細(xì)地列出了互斥與臨界區(qū)的不同:

信號(hào)量

  信號(hào)量是維護(hù)0到指定最大值之間的同步對(duì)象。信號(hào)量狀態(tài)在其計(jì)數(shù)大于0時(shí)是有信號(hào)的,而其計(jì)數(shù)是0時(shí)是無信號(hào)的。信號(hào)量對(duì)象在控制上可以支持有限數(shù)量共享資源的訪問。

  信號(hào)量的特點(diǎn)和用途可用下列幾句話定義:

 ?。?)如果當(dāng)前資源的數(shù)量大于0,則信號(hào)量有效;

 ?。?)如果當(dāng)前資源數(shù)量是0,則信號(hào)量無效;

  (3)系統(tǒng)決不允許當(dāng)前資源的數(shù)量為負(fù)值;

 ?。?)當(dāng)前資源數(shù)量決不能大于最大資源數(shù)量。

  創(chuàng)建信號(hào)量

HANDLE CreateSemaphore (
 PSECURITY_ATTRIBUTE psa,
 LONG lInitialCount, //開始時(shí)可供使用的資源數(shù)
 LONG lMaximumCount, //最大資源數(shù)
PCTSTR pszName);

  釋放信號(hào)量

  通過調(diào)用ReleaseSemaphore函數(shù),線程就能夠?qū)π艠?biāo)的當(dāng)前資源數(shù)量進(jìn)行遞增,該函數(shù)原型為:

BOOL WINAPI ReleaseSemaphore(
 HANDLE hSemaphore,
 LONG lReleaseCount, //信號(hào)量的當(dāng)前資源數(shù)增加lReleaseCount
 LPLONG lpPreviousCount
);

  打開信號(hào)量

  和其他核心對(duì)象一樣,信號(hào)量也可以通過名字跨進(jìn)程訪問,打開信號(hào)量的API為:

HANDLE OpenSemaphore (
 DWORD fdwAccess,
 BOOL bInherithandle,
 PCTSTR pszName
);

  互鎖訪問

  當(dāng)必須以原子操作方式來修改單個(gè)值時(shí),互鎖訪問函數(shù)是相當(dāng)有用的。所謂原子訪問,是指線程在訪問資源時(shí)能夠確保所有其他線程都不在同一時(shí)間內(nèi)訪問相同的資源。

  請(qǐng)看下列代碼:

int globalVar = 0;

DWORD WINAPI ThreadFunc1(LPVOID n)
{
 globalVar++;
 return 0;
}
DWORD WINAPI ThreadFunc2(LPVOID n)
{
 globalVar++;
 return 0;
}

  運(yùn)行ThreadFunc1和ThreadFunc2線程,結(jié)果是不可預(yù)料的,因?yàn)間lobalVar++并不對(duì)應(yīng)著一條機(jī)器指令,我們看看globalVar++的反匯編代碼:

00401038 mov eax,[globalVar (0042d3f0)]
0040103D add eax,1
00401040 mov [globalVar (0042d3f0)],eax

  在"mov eax,[globalVar (0042d3f0)]" 指令與"add eax,1" 指令以及"add eax,1" 指令與"mov [globalVar (0042d3f0)],eax"指令之間都可能發(fā)生線程切換,使得程序的執(zhí)行后globalVar的結(jié)果不能確定。我們可以使用InterlockedExchangeAdd函數(shù)解決這個(gè)問題:

int globalVar = 0;

DWORD WINAPI ThreadFunc1(LPVOID n)
{
 InterlockedExchangeAdd(&globalVar,1);
 return 0;
}
DWORD WINAPI ThreadFunc2(LPVOID n)
{
 InterlockedExchangeAdd(&globalVar,1);
 return 0;
}

  InterlockedExchangeAdd保證對(duì)變量globalVar的訪問具有"原子性"。互鎖訪問的控制速度非???,調(diào)用一個(gè)互鎖函數(shù)的CPU周期通常小于50,不需要進(jìn)行用戶方式與內(nèi)核方式的切換(該切換通常需要運(yùn)行1000個(gè)CPU周期)。

  互鎖訪問函數(shù)的缺點(diǎn)在于其只能對(duì)單一變量進(jìn)行原子訪問,如果要訪問的資源比較復(fù)雜,仍要使用臨界區(qū)或互斥。

  可等待定時(shí)器

  可等待定時(shí)器是在某個(gè)時(shí)間或按規(guī)定的間隔時(shí)間發(fā)出自己的信號(hào)通知的內(nèi)核對(duì)象。它們通常用來在某個(gè)時(shí)間執(zhí)行某個(gè)操作。

  創(chuàng)建可等待定時(shí)器

HANDLE CreateWaitableTimer(
 PSECURITY_ATTRISUTES psa,
 BOOL fManualReset,//人工重置或自動(dòng)重置定時(shí)器
PCTSTR pszName);

  設(shè)置可等待定時(shí)器

  可等待定時(shí)器對(duì)象在非激活狀態(tài)下被創(chuàng)建,程序員應(yīng)調(diào)用 SetWaitableTimer函數(shù)來界定定時(shí)器在何時(shí)被激活:

BOOL SetWaitableTimer(
 HANDLE hTimer, //要設(shè)置的定時(shí)器
 const LARGE_INTEGER *pDueTime, //指明定時(shí)器第一次激活的時(shí)間
 LONG lPeriod, //指明此后定時(shí)器應(yīng)該間隔多長時(shí)間激活一次
 PTIMERAPCROUTINE pfnCompletionRoutine,
 PVOID PvArgToCompletionRoutine,
BOOL fResume);

  取消可等待定時(shí)器

BOOl Cancel WaitableTimer(
 HANDLE hTimer //要取消的定時(shí)器
);

  打開可等待定時(shí)器

  作為一種內(nèi)核對(duì)象,WaitableTimer也可以被其他進(jìn)程以名字打開:

HANDLE OpenWaitableTimer (
 DWORD fdwAccess,
 BOOL bInherithandle,
 PCTSTR pszName
);

  實(shí)例

  下面給出的一個(gè)程序可能發(fā)生死鎖現(xiàn)象:

#include <windows.h>
#include <stdio.h>
CRITICAL_SECTION cs1, cs2;
long WINAPI ThreadFn(long);
main()
{
 long iThreadID;
 InitializeCriticalSection(&cs1);
 InitializeCriticalSection(&cs2);
 CloseHandle(CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ThreadFn, NULL, 0,&iThreadID));
 while (TRUE)
 {
  EnterCriticalSection(&cs1);
  printf("\n線程1占用臨界區(qū)1");
  EnterCriticalSection(&cs2);
  printf("\n線程1占用臨界區(qū)2");

  printf("\n線程1占用兩個(gè)臨界區(qū)");

  LeaveCriticalSection(&cs2);
  LeaveCriticalSection(&cs1);

  printf("\n線程1釋放兩個(gè)臨界區(qū)");
  Sleep(20);
 };
 return (0);
}

long WINAPI ThreadFn(long lParam)
{
 while (TRUE)
 {
  EnterCriticalSection(&cs2);
  printf("\n線程2占用臨界區(qū)2");
  EnterCriticalSection(&cs1);
  printf("\n線程2占用臨界區(qū)1");

  printf("\n線程2占用兩個(gè)臨界區(qū)");

  LeaveCriticalSection(&cs1);
  LeaveCriticalSection(&cs2);

  printf("\n線程2釋放兩個(gè)臨界區(qū)");
  Sleep(20);
 };
}

  運(yùn)行這個(gè)程序,在中途一旦發(fā)生這樣的輸出:

  線程1占用臨界區(qū)1

  線程2占用臨界區(qū)2

  或

  線程2占用臨界區(qū)2

  線程1占用臨界區(qū)1

  或

  線程1占用臨界區(qū)2

  線程2占用臨界區(qū)1

  或

  線程2占用臨界區(qū)1

  線程1占用臨界區(qū)2

  程序就"死"掉了,再也運(yùn)行不下去。因?yàn)檫@樣的輸出,意味著兩個(gè)線程相互等待對(duì)方釋放臨界區(qū),也即出現(xiàn)了死鎖。

  如果我們將線程2的控制函數(shù)改為:

long WINAPI ThreadFn(long lParam)
{
 while (TRUE)
 {
  EnterCriticalSection(&cs1);
  printf("\n線程2占用臨界區(qū)1");
  EnterCriticalSection(&cs2);
  printf("\n線程2占用臨界區(qū)2");

  printf("\n線程2占用兩個(gè)臨界區(qū)");

  LeaveCriticalSection(&cs1);
  LeaveCriticalSection(&cs2);

  printf("\n線程2釋放兩個(gè)臨界區(qū)");
  Sleep(20);
 };
}

  再次運(yùn)行程序,死鎖被消除,程序不再擋掉。這是因?yàn)槲覀兏淖兞司€程2中獲得臨界區(qū)1、2的順序,消除了線程1、2相互等待資源的可能性。

  由此我們得出結(jié)論,在使用線程間的同步機(jī)制時(shí),要特別留心死鎖的發(fā)生。
深入淺出Win32多線程設(shè)計(jì)之MFC的多線程
1、創(chuàng)建和終止線程

  在MFC程序中創(chuàng)建一個(gè)線程,宜調(diào)用AfxBeginThread函數(shù)。該函數(shù)因參數(shù)不同而具有兩種重載版本,分別對(duì)應(yīng)工作者線程和用戶接口(UI)線程。

  工作者線程

CWinThread *AfxBeginThread(
 AFX_THREADPROC pfnThreadProc, //控制函數(shù)
 LPVOID pParam, //傳遞給控制函數(shù)的參數(shù)
 int nPriority = THREAD_PRIORITY_NORMAL, //線程的優(yōu)先級(jí)
 UINT nStackSize = 0, //線程的堆棧大小
 DWORD dwCreateFlags = 0, //線程的創(chuàng)建標(biāo)志
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL //線程的安全屬性
);

  工作者線程編程較為簡(jiǎn)單,只需編寫線程控制函數(shù)和啟動(dòng)線程即可。下面的代碼給出了定義一個(gè)控制函數(shù)和啟動(dòng)它的過程:

//線程控制函數(shù)
UINT MfcThreadProc(LPVOID lpParam)
{
 CExampleClass *lpObject = (CExampleClass*)lpParam;
 if (lpObject == NULL || !lpObject->IsKindof(RUNTIME_CLASS(CExampleClass)))
  return - 1; //輸入?yún)?shù)非法
 //線程成功啟動(dòng)
 while (1)
 {
  ...//
 }
 return 0;
}

//在MFC程序中啟動(dòng)線程
AfxBeginThread(MfcThreadProc, lpObject);

  UI線程

  創(chuàng)建用戶界面線程時(shí),必須首先從CWinThread 派生類,并使用 DECLARE_DYNCREATE 和 IMPLEMENT_DYNCREATE 宏聲明此類。

  下面給出了CWinThread類的原型(添加了關(guān)于其重要函數(shù)功能和是否需要被繼承類重載的注釋):

class CWinThread : public CCmdTarget
{
 DECLARE_DYNAMIC(CWinThread)

 public:
  // Constructors
  CWinThread();
  BOOL CreateThread(DWORD dwCreateFlags = 0, UINT nStackSize = 0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL);

  // Attributes
  CWnd* m_pMainWnd; // main window (usually same AfxGetApp()->m_pMainWnd)
  CWnd* m_pActiveWnd; // active main window (may not be m_pMainWnd)
  BOOL m_bAutoDelete; // enables 'delete this' after thread termination

  // only valid while running
  HANDLE m_hThread; // this thread's HANDLE
  operator HANDLE() const;
  DWORD m_nThreadID; // this thread's ID

  int GetThreadPriority();
  BOOL SetThreadPriority(int nPriority);

  // Operations
  DWORD SuspendThread();
  DWORD ResumeThread();
  BOOL PostThreadMessage(UINT message, WPARAM wParam, LPARAM lParam);

  // Overridables
  //執(zhí)行線程實(shí)例初始化,必須重寫
  virtual BOOL InitInstance();

  // running and idle processing
  //控制線程的函數(shù),包含消息泵,一般不重寫
  virtual int Run();

  //消息調(diào)度到TranslateMessage和DispatchMessage之前對(duì)其進(jìn)行篩選,
  //通常不重寫
  virtual BOOL PreTranslateMessage(MSG* pMsg);

  virtual BOOL PumpMessage(); // low level message pump

  //執(zhí)行線程特定的閑置時(shí)間處理,通常不重寫
  virtual BOOL OnIdle(LONG lCount); // return TRUE if more idle processing
  virtual BOOL IsIdleMessage(MSG* pMsg); // checks for special messages

  //線程終止時(shí)執(zhí)行清除,通常需要重寫
  virtual int ExitInstance(); // default will 'delete this'

  //截獲由線程的消息和命令處理程序引發(fā)的未處理異常,通常不重寫
  virtual LRESULT ProcessWndProcException(CException* e, const MSG* pMsg);

  // Advanced: handling messages sent to message filter hook
  virtual BOOL ProcessMessageFilter(int code, LPMSG lpMsg);

  // Advanced: virtual access to m_pMainWnd
  virtual CWnd* GetMainWnd();

  // Implementation
 public:
  virtual ~CWinThread();
  #ifdef _DEBUG
   virtual void AssertValid() const;
   virtual void Dump(CDumpContext& dc) const;
   int m_nDisablePumpCount; // Diagnostic trap to detect illegal re-entrancy
  #endif
  void CommonConstruct();
  virtual void Delete();
  // 'delete this' only if m_bAutoDelete == TRUE

  // message pump for Run
  MSG m_msgCur; // current message

 public:
  // constructor used by implementation of AfxBeginThread
  CWinThread(AFX_THREADPROC pfnThreadProc, LPVOID pParam);

  // valid after construction
  LPVOID m_pThreadParams; // generic parameters passed to starting function
  AFX_THREADPROC m_pfnThreadProc;

  // set after OLE is initialized
  void (AFXAPI* m_lpfnOleTermOrFreeLib)(BOOL, BOOL);
  COleMessageFilter* m_pMessageFilter;

 protected:
  CPoint m_ptCursorLast; // last mouse position
  UINT m_nMsgLast; // last mouse message
  BOOL DispatchThreadMessageEx(MSG* msg); // helper
  void DispatchThreadMessage(MSG* msg); // obsolete
};

  啟動(dòng)UI線程的AfxBeginThread函數(shù)的原型為:

CWinThread *AfxBeginThread(
 //從CWinThread派生的類的 RUNTIME_CLASS
 CRuntimeClass *pThreadClass,
 int nPriority = THREAD_PRIORITY_NORMAL,
 UINT nStackSize = 0,
 DWORD dwCreateFlags = 0,
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL
);

  我們可以方便地使用VC++ 6.0類向?qū)Фx一個(gè)繼承自CWinThread的用戶線程類。下面給出產(chǎn)生我們自定義的CWinThread子類CMyUIThread的方法。

  打開VC++ 6.0類向?qū)В谌缦麓翱谥羞x擇Base Class類為CWinThread,輸入子類名為CMyUIThread,點(diǎn)擊"OK"按鈕后就產(chǎn)生了類CMyUIThread。


  其源代碼框架為:

/////////////////////////////////////////////////////////////////////////////
// CMyUIThread thread

class CMyUIThread : public CWinThread
{
 DECLARE_DYNCREATE(CMyUIThread)
 protected:
  CMyUIThread(); // protected constructor used by dynamic creation

  // Attributes
 public:

  // Operations
 public:

  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CMyUIThread)
  public:
   virtual BOOL InitInstance();
   virtual int ExitInstance();
  //}}AFX_VIRTUAL

  // Implementation
 protected:
  virtual ~CMyUIThread();

  // Generated message map functions
  //{{AFX_MSG(CMyUIThread)
   // NOTE - the ClassWizard will add and remove member functions here.
  //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

/////////////////////////////////////////////////////////////////////////////
// CMyUIThread

IMPLEMENT_DYNCREATE(CMyUIThread, CWinThread)

CMyUIThread::CMyUIThread()
{}

CMyUIThread::~CMyUIThread()
{}

BOOL CMyUIThread::InitInstance()
{
 // TODO: perform and per-thread initialization here
 return TRUE;
}

int CMyUIThread::ExitInstance()
{
 // TODO: perform any per-thread cleanup here
 return CWinThread::ExitInstance();
}

BEGIN_MESSAGE_MAP(CMyUIThread, CWinThread)
//{{AFX_MSG_MAP(CMyUIThread)
// NOTE - the ClassWizard will add and remove mapping macros here.
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

  使用下列代碼就可以啟動(dòng)這個(gè)UI線程:

CMyUIThread *pThread;
pThread = (CMyUIThread*)
AfxBeginThread( RUNTIME_CLASS(CMyUIThread) );

  另外,我們也可以不用AfxBeginThread 創(chuàng)建線程,而是分如下兩步完成:

 ?。?)調(diào)用線程類的構(gòu)造函數(shù)創(chuàng)建一個(gè)線程對(duì)象;

 ?。?)調(diào)用CWinThread::CreateThread函數(shù)來啟動(dòng)該線程。

  在線程自身內(nèi)調(diào)用AfxEndThread函數(shù)可以終止該線程:

void AfxEndThread(
 UINT nExitCode //the exit code of the thread
);

  對(duì)于UI線程而言,如果消息隊(duì)列中放入了WM_QUIT消息,將結(jié)束線程。

  關(guān)于UI線程和工作者線程的分配,最好的做法是:將所有與UI相關(guān)的操作放入主線程,其它的純粹的運(yùn)算工作交給獨(dú)立的數(shù)個(gè)工作者線程。

  候捷先生早些時(shí)間喜歡為MDI程序的每個(gè)窗口創(chuàng)建一個(gè)線程,他后來澄清了這個(gè)錯(cuò)誤。因?yàn)槿绻麨镸DI程序的每個(gè)窗口都單獨(dú)創(chuàng)建一個(gè)線程,在窗口進(jìn)行切換的時(shí)候,將進(jìn)行線程的上下文切換!
2.線程間通信

  MFC中定義了繼承自CSyncObject類的CCriticalSection 、CCEvent、CMutex、CSemaphore類封裝和簡(jiǎn)化了WIN32 API所提供的臨界區(qū)、事件、互斥和信號(hào)量。使用這些同步機(jī)制,必須包含"Afxmt.h"頭文件。下圖給出了類的繼承關(guān)系:


  作為CSyncObject類的繼承類,我們僅僅使用基類CSyncObject的接口函數(shù)就可以方便、統(tǒng)一的操作CCriticalSection 、CCEvent、CMutex、CSemaphore類,下面是CSyncObject類的原型:

class CSyncObject : public CObject
{
 DECLARE_DYNAMIC(CSyncObject)

 // Constructor
 public:
  CSyncObject(LPCTSTR pstrName);

  // Attributes
 public:
  operator HANDLE() const;
  HANDLE m_hObject;

  // Operations
  virtual BOOL Lock(DWORD dwTimeout = INFINITE);
  virtual BOOL Unlock() = 0;
  virtual BOOL Unlock(LONG /* lCount */, LPLONG /* lpPrevCount=NULL */)
  { return TRUE; }

  // Implementation
 public:
  virtual ~CSyncObject();
  #ifdef _DEBUG
   CString m_strName;
   virtual void AssertValid() const;
   virtual void Dump(CDumpContext& dc) const;
  #endif
  friend class CSingleLock;
  friend class CMultiLock;
};

  CSyncObject類最主要的兩個(gè)函數(shù)是Lock和Unlock,若我們直接使用CSyncObject類及其派生類,我們需要非常小心地在Lock之后調(diào)用Unlock。

  MFC提供的另兩個(gè)類CSingleLock(等待一個(gè)對(duì)象)和CMultiLock(等待多個(gè)對(duì)象)為我們編寫應(yīng)用程序提供了更靈活的機(jī)制,下面以實(shí)際來闡述CSingleLock的用法:

class CThreadSafeWnd
{
 public:
  CThreadSafeWnd(){}
  ~CThreadSafeWnd(){}
  void SetWindow(CWnd *pwnd)
  {
   m_pCWnd = pwnd;
  }
  void PaintBall(COLORREF color, CRect &rc);
 private:
  CWnd *m_pCWnd;
  CCriticalSection m_CSect;
};

void CThreadSafeWnd::PaintBall(COLORREF color, CRect &rc)
{
 CSingleLock csl(&m_CSect);
 //缺省的Timeout是INFINITE,只有m_Csect被激活,csl.Lock()才能返回
 //true,這里一直等待
 if (csl.Lock())
;
 {
  // not necessary
  //AFX_MANAGE_STATE(AfxGetStaticModuleState( ));
  CDC *pdc = m_pCWnd->GetDC();
  CBrush brush(color);
  CBrush *oldbrush = pdc->SelectObject(&brush);
  pdc->Ellipse(rc);
  pdc->SelectObject(oldbrush);
  GdiFlush(); // don't wait to update the display
 }
}

  上述實(shí)例講述了用CSingleLock對(duì)Windows GDI相關(guān)對(duì)象進(jìn)行保護(hù)的方法,下面再給出一個(gè)其他方面的例子:

int array1[10], array2[10];
CMutexSection section; //創(chuàng)建一個(gè)CMutex類的對(duì)象

//賦值線程控制函數(shù)
UINT EvaluateThread(LPVOID param)
{
 CSingleLock singlelock;
 singlelock(&section);

 //互斥區(qū)域
 singlelock.Lock();
 for (int i = 0; i < 10; i++)
  array1[i] = i;
 singlelock.Unlock();
}
//拷貝線程控制函數(shù)
UINT CopyThread(LPVOID param)
{
 CSingleLock singlelock;
 singlelock(&section);

 //互斥區(qū)域
 singlelock.Lock();
 for (int i = 0; i < 10; i++)
  array2[i] = array1[i];
 singlelock.Unlock();
}
}

AfxBeginThread(EvaluateThread, NULL); //啟動(dòng)賦值線程
AfxBeginThread(CopyThread, NULL); //啟動(dòng)拷貝線程

  上面的例子中啟動(dòng)了兩個(gè)線程EvaluateThread和CopyThread,線程EvaluateThread把10個(gè)數(shù)賦值給數(shù)組array1[],線程CopyThread將數(shù)組array1[]拷貝給數(shù)組array2[]。由于數(shù)組的拷貝和賦值都是整體行為,如果不以互斥形式執(zhí)行代碼段:

for (int i = 0; i < 10; i++)
array1[i] = i;

  和

for (int i = 0; i < 10; i++)
array2[i] = array1[i];

  其結(jié)果是很難預(yù)料的!

  除了可使用CCriticalSection、CEvent、CMutex、CSemaphore作為線程間同步通信的方式以外,我們還可以利用PostThreadMessage函數(shù)在線程間發(fā)送消息:

BOOL PostThreadMessage(DWORD idThread, // thread identifier
UINT Msg, // message to post
WPARAM wParam, // first message parameter
LPARAM lParam // second message parameter
);
3.線程與消息隊(duì)列

  在WIN32中,每一個(gè)線程都對(duì)應(yīng)著一個(gè)消息隊(duì)列。由于一個(gè)線程可以產(chǎn)生數(shù)個(gè)窗口,所以并不是每個(gè)窗口都對(duì)應(yīng)著一個(gè)消息隊(duì)列。下列幾句話應(yīng)該作為"定理"被記?。?br>
  "定理" 一

  所有產(chǎn)生給某個(gè)窗口的消息,都先由創(chuàng)建這個(gè)窗口的線程處理;

  "定理" 二

  Windows屏幕上的每一個(gè)控件都是一個(gè)窗口,有對(duì)應(yīng)的窗口函數(shù)。

  消息的發(fā)送通常有兩種方式,一是SendMessage,一是PostMessage,其原型分別為:

LRESULT SendMessage(HWND hWnd, // handle of destination window
 UINT Msg, // message to send
 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);
BOOL PostMessage(HWND hWnd, // handle of destination window
 UINT Msg, // message to post
 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);

  兩個(gè)函數(shù)原型中的四個(gè)參數(shù)的意義相同,但是SendMessage和PostMessage的行為有差異。SendMessage必須等待消息被處理后才返回,而PostMessage僅僅將消息放入消息隊(duì)列。SendMessage的目標(biāo)窗口如果屬于另一個(gè)線程,則會(huì)發(fā)生線程上下文切換,等待另一線程處理完成消息。為了防止另一線程當(dāng)?shù)簦瑢?dǎo)致SendMessage永遠(yuǎn)不能返回,我們可以調(diào)用SendMessageTimeout函數(shù):

LRESULT SendMessageTimeout(
 HWND hWnd, // handle of destination window
 UINT Msg, // message to send
 WPARAM wParam, // first message parameter
 LPARAM lParam, // second message parameter
 UINT fuFlags, // how to send the message
 UINT uTimeout, // time-out duration
 LPDWORD lpdwResult // return value for synchronous call
);

  4. MFC線程、消息隊(duì)列與MFC程序的"生死因果"

  分析MFC程序的主線程啟動(dòng)及消息隊(duì)列處理的過程將有助于我們進(jìn)一步理解UI線程與消息隊(duì)列的關(guān)系,為此我們需要簡(jiǎn)單地?cái)⑹鲆幌翸FC程序的"生死因果"(侯捷:《深入淺出MFC》)。

  使用VC++ 6.0的向?qū)瓿梢粋€(gè)最簡(jiǎn)單的單文檔架構(gòu)MFC應(yīng)用程序MFCThread:

 ?。?) 輸入MFC EXE工程名MFCThread;

 ?。?) 選擇單文檔架構(gòu),不支持Document/View結(jié)構(gòu);

 ?。?) ActiveX、3D container等其他選項(xiàng)都選擇無。

  我們來分析這個(gè)工程。下面是產(chǎn)生的核心源代碼:

  MFCThread.h 文件

class CMFCThreadApp : public CWinApp
{
 public:
  CMFCThreadApp();

  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CMFCThreadApp)
   public:
    virtual BOOL InitInstance();
  //}}AFX_VIRTUAL

  // Implementation

 public:
  //{{AFX_MSG(CMFCThreadApp)
   afx_msg void OnAppAbout();
   // NOTE - the ClassWizard will add and remove member functions here.
   // DO NOT EDIT what you see in these blocks of generated code !
  //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

  MFCThread.cpp文件

CMFCThreadApp theApp;

/////////////////////////////////////////////////////////////////////////////
// CMFCThreadApp initialization

BOOL CMFCThreadApp::InitInstance()
{
 …
 CMainFrame* pFrame = new CMainFrame;
 m_pMainWnd = pFrame;

 // create and load the frame with its resources
 pFrame->LoadFrame(IDR_MAINFRAME,WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE, NULL,NULL);
 // The one and only window has been initialized, so show and update it.
 pFrame->ShowWindow(SW_SHOW);
 pFrame->UpdateWindow();

 return TRUE;
}

  MainFrm.h文件

#include "ChildView.h"

class CMainFrame : public CFrameWnd
{
 public:
  CMainFrame();
 protected:
  DECLARE_DYNAMIC(CMainFrame)

  // Attributes
 public:

  // Operations
 public:
  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CMainFrame)
   virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
   virtual BOOL OnCmdMsg(UINT nID, int nCode, void* pExtra, AFX_CMDHANDLERINFO* pHandlerInfo);
  //}}AFX_VIRTUAL

  // Implementation
 public:
  virtual ~CMainFrame();
  #ifdef _DEBUG
   virtual void AssertValid() const;
   virtual void Dump(CDumpContext& dc) const;
  #endif
  CChildView m_wndView;

  // Generated message map functions
 protected:
 //{{AFX_MSG(CMainFrame)
  afx_msg void OnSetFocus(CWnd *pOldWnd);
  // NOTE - the ClassWizard will add and remove member functions here.
  // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

  MainFrm.cpp文件

IMPLEMENT_DYNAMIC(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
  // NOTE - the ClassWizard will add and remove mapping macros here.
  // DO NOT EDIT what you see in these blocks of generated code !
  ON_WM_SETFOCUS()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}

CMainFrame::~CMainFrame()
{}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if( !CFrameWnd::PreCreateWindow(cs) )
  return FALSE;
  // TODO: Modify the Window class or styles here by modifying
  // the CREATESTRUCT cs

 cs.dwExStyle &= ~WS_EX_CLIENTEDGE;
 cs.lpszClass = AfxRegisterWndClass(0);
 return TRUE;
}

  ChildView.h文件

// CChildView window

class CChildView : public CWnd
{
 // Construction
 public:
  CChildView();

  // Attributes
 public:
  // Operations
 public:
  // Overrides
  // ClassWizard generated virtual function overrides
  //{{AFX_VIRTUAL(CChildView)
   protected:
    virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
  //}}AFX_VIRTUAL

  // Implementation
 public:
  virtual ~CChildView();

  // Generated message map functions
 protected:
  //{{AFX_MSG(CChildView)
   afx_msg void OnPaint();
  //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

ChildView.cpp文件
// CChildView

CChildView::CChildView()
{}

CChildView::~CChildView()
{}

BEGIN_MESSAGE_MAP(CChildView,CWnd )
//{{AFX_MSG_MAP(CChildView)
ON_WM_PAINT()
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////
// CChildView message handlers

BOOL CChildView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CWnd::PreCreateWindow(cs))
  return FALSE;

 cs.dwExStyle |= WS_EX_CLIENTEDGE;
 cs.style &= ~WS_BORDER;
 cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW|CS_VREDRAW|CS_DBLCLKS,::LoadCursor(NULL, IDC_ARROW),
HBRUSH(COLOR_WINDOW+1),NULL);

 return TRUE;
}

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 // TODO: Add your message handler code here
 // Do not call CWnd::OnPaint() for painting messages
}

  文件MFCThread.h和MFCThread.cpp定義和實(shí)現(xiàn)的類CMFCThreadApp繼承自CWinApp類,而CWinApp類又繼承自CWinThread類(CWinThread類又繼承自CCmdTarget類),所以CMFCThread本質(zhì)上是一個(gè)MFC線程類,下圖給出了相關(guān)的類層次結(jié)構(gòu):

我們提取CWinApp類原型的一部分:

class CWinApp : public CWinThread
{
 DECLARE_DYNAMIC(CWinApp)
 public:
  // Constructor
  CWinApp(LPCTSTR lpszAppName = NULL);// default app name
  // Attributes
  // Startup args (do not change)
  HINSTANCE m_hInstance;
  HINSTANCE m_hPrevInstance;
  LPTSTR m_lpCmdLine;
  int m_nCmdShow;
  // Running args (can be changed in InitInstance)
  LPCTSTR m_pszAppName; // human readable name
  LPCTSTR m_pszExeName; // executable name (no spaces)
  LPCTSTR m_pszHelpFilePath; // default based on module path
  LPCTSTR m_pszProfileName; // default based on app name

  // Overridables
  virtual BOOL InitApplication();
  virtual BOOL InitInstance();
  virtual int ExitInstance(); // return app exit code
  virtual int Run();
  virtual BOOL OnIdle(LONG lCount); // return TRUE if more idle processing
  virtual LRESULT ProcessWndProcException(CException* e,const MSG* pMsg);

 public:
  virtual ~CWinApp();
 protected:
  DECLARE_MESSAGE_MAP()
};

  SDK程序的WinMain 所完成的工作現(xiàn)在由CWinApp 的三個(gè)函數(shù)完成:

virtual BOOL InitApplication();
virtual BOOL InitInstance();
virtual int Run();

  "CMFCThreadApp theApp;"語句定義的全局變量theApp是整個(gè)程式的application object,每一個(gè)MFC 應(yīng)用程序都有一個(gè)。當(dāng)我們執(zhí)行MFCThread程序的時(shí)候,這個(gè)全局變量被構(gòu)造。theApp 配置完成后,WinMain開始執(zhí)行。但是程序中并沒有WinMain的代碼,它在哪里呢?原來MFC早已準(zhǔn)備好并由Linker直接加到應(yīng)用程序代碼中的,其原型為(存在于VC++6.0安裝目錄下提供的APPMODUL.CPP文件中):

extern "C" int WINAPI
_tWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int nCmdShow)
{
 // call shared/exported WinMain
 return AfxWinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow);
}

  其中調(diào)用的AfxWinMain如下(存在于VC++6.0安裝目錄下提供的WINMAIN.CPP文件中):

int AFXAPI AfxWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPTSTR lpCmdLine, int nCmdShow)
{
 ASSERT(hPrevInstance == NULL);

 int nReturnCode = -1;
 CWinThread* pThread = AfxGetThread();
 CWinApp* pApp = AfxGetApp();

 // AFX internal initialization
 if (!AfxWinInit(hInstance, hPrevInstance, lpCmdLine, nCmdShow))
  goto InitFailure;

 // App global initializations (rare)
 if (pApp != NULL && !pApp->InitApplication())
  goto InitFailure;

 // Perform specific initializations
 if (!pThread->InitInstance())
 {
  if (pThread->m_pMainWnd != NULL)
  {
   TRACE0("Warning: Destroying non-NULL m_pMainWnd\n");
   pThread->m_pMainWnd->DestroyWindow();
  }
  nReturnCode = pThread->ExitInstance();
  goto InitFailure;
 }
 nReturnCode = pThread->Run();

 InitFailure:
 #ifdef _DEBUG
  // Check for missing AfxLockTempMap calls
  if (AfxGetModuleThreadState()->m_nTempMapLock != 0)
  {
   TRACE1("Warning: Temp map lock count non-zero (%ld).\n",
AfxGetModuleThreadState()->m_nTempMapLock);
  }
  AfxLockTempMaps();
  AfxUnlockTempMaps(-1);
 #endif

 AfxWinTerm();
 return nReturnCode;
}

  我們提取主干,實(shí)際上,這個(gè)函數(shù)做的事情主要是:

CWinThread* pThread = AfxGetThread();
CWinApp* pApp = AfxGetApp();
AfxWinInit(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
pApp->InitApplication()
pThread->InitInstance()
pThread->Run();

  其中,InitApplication 是注冊(cè)窗口類別的場(chǎng)所;InitInstance是產(chǎn)生窗口并顯示窗口的場(chǎng)所;Run是提取并分派消息的場(chǎng)所。這樣,MFC就同WIN32 SDK程序?qū)?yīng)起來了。CWinThread::Run是程序生命的"活水源頭"(侯捷:《深入淺出MFC》,函數(shù)存在于VC++ 6.0安裝目錄下提供的THRDCORE.CPP文件中):

// main running routine until thread exits
int CWinThread::Run()
{
 ASSERT_VALID(this);

 // for tracking the idle time state
 BOOL bIdle = TRUE;
 LONG lIdleCount = 0;

 // acquire and dispatch messages until a WM_QUIT message is received.
 for (;;)
 {
  // phase1: check to see if we can do idle work
  while (bIdle && !::PeekMessage(&m_msgCur, NULL, NULL, NULL, PM_NOREMOVE))
  {
   // call OnIdle while in bIdle state
   if (!OnIdle(lIdleCount++))
    bIdle = FALSE; // assume "no idle" state
  }

  // phase2: pump messages while available
  do
  {
   // pump message, but quit on WM_QUIT
   if (!PumpMessage())
    return ExitInstance();

   // reset "no idle" state after pumping "normal" message
   if (IsIdleMessage(&m_msgCur))
   {
    bIdle = TRUE;
    lIdleCount = 0;
   }

  } while (::PeekMessage(&m_msgCur, NULL, NULL, NULL, PM_NOREMOVE));
 }
 ASSERT(FALSE); // not reachable
}

  其中的PumpMessage函數(shù)又對(duì)應(yīng)于:

/////////////////////////////////////////////////////////////////////////////
// CWinThread implementation helpers

BOOL CWinThread::PumpMessage()
{
 ASSERT_VALID(this);

 if (!::GetMessage(&m_msgCur, NULL, NULL, NULL))
 {
  return FALSE;
 }

 // process this message
 if(m_msgCur.message != WM_KICKIDLE && !PreTranslateMessage(&m_msgCur))
 {
  ::TranslateMessage(&m_msgCur);
  ::DispatchMessage(&m_msgCur);
 }
 return TRUE;
}

  因此,忽略IDLE狀態(tài),整個(gè)RUN的執(zhí)行提取主干就是:

do {
 ::GetMessage(&msg,...);
 PreTranslateMessage{&msg);
 ::TranslateMessage(&msg);
 ::DispatchMessage(&msg);
 ...
} while (::PeekMessage(...));

  由此,我們建立了MFC消息獲取和派生機(jī)制與WIN32 SDK程序之間的對(duì)應(yīng)關(guān)系。下面繼續(xù)分析MFC消息的"繞行"過程。

  在MFC中,只要是CWnd 衍生類別,就可以攔下任何Windows消息。與窗口無關(guān)的MFC類別(例如CDocument 和CWinApp)如果也想處理消息,必須衍生自CCmdTarget,并且只可能收到WM_COMMAND消息。所有能進(jìn)行MESSAGE_MAP的類都繼承自CCmdTarget,如:


  MFC中MESSAGE_MAP的定義依賴于以下三個(gè)宏:

DECLARE_MESSAGE_MAP()

BEGIN_MESSAGE_MAP(
 theClass, //Specifies the name of the class whose message map this is
 baseClass //Specifies the name of the base class of theClass
)

END_MESSAGE_MAP()

  我們程序中涉及到的有:MFCThread.h、MainFrm.h、ChildView.h文件

DECLARE_MESSAGE_MAP()
MFCThread.cpp文件
BEGIN_MESSAGE_MAP(CMFCThreadApp, CWinApp)
//{{AFX_MSG_MAP(CMFCThreadApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
MainFrm.cpp文件
BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code !
ON_WM_SETFOCUS()
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
ChildView.cpp文件
BEGIN_MESSAGE_MAP(CChildView,CWnd )
//{{AFX_MSG_MAP(CChildView)
ON_WM_PAINT()
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

  由這些宏,MFC建立了一個(gè)消息映射表(消息流動(dòng)網(wǎng)),按照消息流動(dòng)網(wǎng)匹配對(duì)應(yīng)的消息處理函數(shù),完成整個(gè)消息的"繞行"。

  看到這里相信你有這樣的疑問:程序定義了CWinApp類的theApp全局變量,可是從來沒有調(diào)用AfxBeginThread或theApp.CreateThread啟動(dòng)線程呀,theApp對(duì)應(yīng)的線程是怎么啟動(dòng)的?

  答:MFC在這里用了很高明的一招。實(shí)際上,程序開始運(yùn)行,第一個(gè)線程是由操作系統(tǒng)(OS)啟動(dòng)的,在CWinApp的構(gòu)造函數(shù)里,MFC將theApp"對(duì)應(yīng)"向了這個(gè)線程,具體的實(shí)現(xiàn)是這樣的:

CWinApp::CWinApp(LPCTSTR lpszAppName)
{
 if (lpszAppName != NULL)
  m_pszAppName = _tcsdup(lpszAppName);
 else
  m_pszAppName = NULL;

 // initialize CWinThread state
 AFX_MODULE_STATE *pModuleState = _AFX_CMDTARGET_GETSTATE();
 AFX_MODULE_THREAD_STATE *pThreadState = pModuleState->m_thread;
 ASSERT(AfxGetThread() == NULL);
 pThreadState->m_pCurrentWinThread = this;
 ASSERT(AfxGetThread() == this);
 m_hThread = ::GetCurrentThread();
 m_nThreadID = ::GetCurrentThreadId();

 // initialize CWinApp state
 ASSERT(afxCurrentWinApp == NULL); // only one CWinApp object please
 pModuleState->m_pCurrentWinApp = this;
 ASSERT(AfxGetApp() == this);

 // in non-running state until WinMain
 m_hInstance = NULL;
 m_pszHelpFilePath = NULL;
 m_pszProfileName = NULL;
 m_pszRegistryKey = NULL;
 m_pszExeName = NULL;
 m_pRecentFileList = NULL;
 m_pDocManager = NULL;
 m_atomApp = m_atomSystemTopic = NULL; //微軟懶鬼?或者他認(rèn)為
 //這樣連等含義更明確?
 m_lpCmdLine = NULL;
 m_pCmdInfo = NULL;

 // initialize wait cursor state
 m_nWaitCursorCount = 0;
 m_hcurWaitCursorRestore = NULL;

 // initialize current printer state
 m_hDevMode = NULL;
 m_hDevNames = NULL;
 m_nNumPreviewPages = 0; // not specified (defaults to 1)

 // initialize DAO state
 m_lpfnDaoTerm = NULL; // will be set if AfxDaoInit called

 // other initialization
 m_bHelpMode = FALSE;
 m_nSafetyPoolSize = 512; // default size
}

  很顯然,theApp成員變量都被賦予OS啟動(dòng)的這個(gè)當(dāng)前線程相關(guān)的值,如代碼:

m_hThread = ::GetCurrentThread();//theApp的線程句柄等于當(dāng)前線程句柄
m_nThreadID = ::GetCurrentThreadId();//theApp的線程ID等于當(dāng)前線程ID

  所以CWinApp類幾乎只是為MFC程序的第一個(gè)線程量身定制的,它不需要也不能被AfxBeginThread或theApp.CreateThread"再次"啟動(dòng)。這就是CWinApp類和theApp全局變量的內(nèi)涵!如果你要再增加一個(gè)UI線程,不要繼承類CWinApp,而應(yīng)繼承類CWinThread。而參考第1節(jié),由于我們一般以主線程(在MFC程序里實(shí)際上就是OS啟動(dòng)的第一個(gè)線程)處理所有窗口的消息,所以我們幾乎沒有再啟動(dòng)UI線程的需求!
深入淺出Win32多線程程序設(shè)計(jì)之綜合實(shí)例
本章我們將以工業(yè)控制和嵌入式系統(tǒng)中運(yùn)用極為廣泛的串口通信為例講述多線程的典型應(yīng)用。

  而網(wǎng)絡(luò)通信也是多線程應(yīng)用最廣泛的領(lǐng)域之一,所以本章的最后一節(jié)也將對(duì)多線程網(wǎng)絡(luò)通信進(jìn)行簡(jiǎn)短的描述。

  1.串口通信

  在工業(yè)控制系統(tǒng)中,工控機(jī)(一般都基于PC Windows平臺(tái))經(jīng)常需要與單片機(jī)通過串口進(jìn)行通信。因此,操作和使用PC的串口成為大多數(shù)單片機(jī)、嵌入式系統(tǒng)領(lǐng)域工程師必須具備的能力。

  串口的使用需要通過三個(gè)步驟來完成的:

  (1) 打開通信端口;

  (2) 初始化串口,設(shè)置波特率、數(shù)據(jù)位、停止位、奇偶校驗(yàn)等參數(shù)。為了給讀者一個(gè)直觀的印象,下圖從Windows的"控制面板->系統(tǒng)->設(shè)備管理器->通信端口(COM1)"打開COM的設(shè)置窗口:



  (3) 讀寫串口。

  在WIN32平臺(tái)下,對(duì)通信端口進(jìn)行操作跟基本的文件操作一樣。

  創(chuàng)建/打開COM資源

  下列函數(shù)如果調(diào)用成功,則返回一個(gè)標(biāo)識(shí)通信端口的句柄,否則返回-1:

HADLE CreateFile(PCTSTR lpFileName, //通信端口名,如"COM1"
WORD dwDesiredAccess, //對(duì)資源的訪問類型
WORD dwShareMode, //指定共享模式,COM不能共享,該參數(shù)為0
PSECURITY_ATTRIBUTES lpSecurityAttributes,
//安全描述符指針,可為NULL
WORD dwCreationDisposition, //創(chuàng)建方式
WORD dwFlagsAndAttributes, //文件屬性,可為NULL
HANDLE hTemplateFile //模板文件句柄,置為NULL
);

  獲得/設(shè)置COM屬性

  下列函數(shù)可以獲得COM口的設(shè)備控制塊,從而獲得相關(guān)參數(shù):

BOOL WINAPI GetCommState(
 HANDLE hFile, //標(biāo)識(shí)通信端口的句柄
 LPDCB lpDCB //指向一個(gè)設(shè)備控制塊(DCB結(jié)構(gòu))的指針
);

  如果要調(diào)整通信端口的參數(shù),則需要重新配置設(shè)備控制塊,再用WIN32 API SetCommState()函數(shù)進(jìn)行設(shè)置:

BOOL SetCommState(
 HANDLE hFile, //標(biāo)識(shí)通信端口的句柄
 LPDCB lpDCB //指向一個(gè)設(shè)備控制塊(DCB結(jié)構(gòu))的指針
);

  DCB結(jié)構(gòu)包含了串口的各項(xiàng)參數(shù)設(shè)置,如下:

typedef struct _DCB
{
 // dcb
 DWORD DCBlength; // sizeof(DCB)
 DWORD BaudRate; // current baud rate
 DWORD fBinary: 1; // binary mode, no EOF check
 DWORD fParity: 1; // enable parity checking
 DWORD fOutxCtsFlow: 1; // CTS output flow control
 DWORD fOutxDsrFlow: 1; // DSR output flow control
 DWORD fDtrControl: 2; // DTR flow control type
 DWORD fDsrSensitivity: 1; // DSR sensitivity
 DWORD fTXContinueOnXoff: 1; // XOFF continues Tx
 DWORD fOutX: 1; // XON/XOFF out flow control
 DWORD fInX: 1; // XON/XOFF in flow control
 DWORD fErrorChar: 1; // enable error replacement
 DWORD fNull: 1; // enable null stripping
 DWORD fRtsControl: 2; // RTS flow control
 DWORD fAbortOnError: 1; // abort reads/writes on error
 DWORD fDummy2: 17; // reserved
 WORD wReserved; // not currently used
 WORD XonLim; // transmit XON threshold
 WORD XoffLim; // transmit XOFF threshold
 BYTE ByteSize; // number of bits/byte, 4-8
 BYTE Parity; // 0-4=no,odd,even,mark,space
 BYTE StopBits; // 0,1,2 = 1, 1.5, 2
 char XonChar; // Tx and Rx XON character
 char XoffChar; // Tx and Rx XOFF character
 char ErrorChar; // error replacement character
 char EofChar; // end of input character
 char EvtChar; // received event character
 WORD wReserved1; // reserved; do not use
} DCB;

  讀寫串口

  在讀寫串口之前,還要用PurgeComm()函數(shù)清空緩沖區(qū),并用SetCommMask ()函數(shù)設(shè)置事件掩模來監(jiān)視指定通信端口上的事件,其原型為:

BOOL SetCommMask(
 HANDLE hFile, //標(biāo)識(shí)通信端口的句柄
 DWORD dwEvtMask //能夠使能的通信事件
);

  串口上可能發(fā)生的事件如下表所示:

事件描述
EV_BREAKA break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSRThe DSR(data-set-ready) signal changed state.
EV_ERRA line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.
EV_RXCHARA character was received and placed in the input buffer.
EV_RXFLAG The event character was received and placed in the input buffer. The event character is specified in the device's DCB structure, which is applied to a serial port by using the SetCommState function.
EV_TXEMPTYThe last character in the output buffer was sent.

  在設(shè)置好事件掩模后,我們就可以利用WaitCommEvent()函數(shù)來等待串口上發(fā)生事件,其函數(shù)原型為:

BOOL WaitCommEvent(
 HANDLE hFile, //標(biāo)識(shí)通信端口的句柄
 LPDWORD lpEvtMask, //指向存放事件標(biāo)識(shí)變量的指針
 LPOVERLAPPED lpOverlapped, // 指向overlapped結(jié)構(gòu)
);

  我們可以在發(fā)生事件后,根據(jù)相應(yīng)的事件類型,進(jìn)行串口的讀寫操作:

BOOL ReadFile(HANDLE hFile, //標(biāo)識(shí)通信端口的句柄
 LPVOID lpBuffer, //輸入數(shù)據(jù)Buffer指針
 DWORD nNumberOfBytesToRead, // 需要讀取的字節(jié)數(shù)
 LPDWORD lpNumberOfBytesRead, //實(shí)際讀取的字節(jié)數(shù)指針
 LPOVERLAPPED lpOverlapped //指向overlapped結(jié)構(gòu)
);
BOOL WriteFile(HANDLE hFile, //標(biāo)識(shí)通信端口的句柄
 LPCVOID lpBuffer, //輸出數(shù)據(jù)Buffer指針
 DWORD nNumberOfBytesToWrite, //需要寫的字節(jié)數(shù)
 LPDWORD lpNumberOfBytesWritten, //實(shí)際寫入的字節(jié)數(shù)指針
 LPOVERLAPPED lpOverlapped //指向overlapped結(jié)構(gòu)
);
2.工程實(shí)例

  下面我們用第1節(jié)所述API實(shí)現(xiàn)一個(gè)多線程的串口通信程序。這個(gè)例子工程(工程名為MultiThreadCom)的界面很簡(jiǎn)單,如下圖所示:


  它是一個(gè)多線程的應(yīng)用程序,包括兩個(gè)工作者線程,分別處理串口1和串口2。為了簡(jiǎn)化問題,我們讓連接兩個(gè)串口的電纜只包含RX、TX兩根連線(即不以硬件控制RS-232,串口上只會(huì)發(fā)生EV_TXEMPTY、EV_RXCHAR事件)。

  在工程實(shí)例的BOOL CMultiThreadComApp::InitInstance()函數(shù)中,啟動(dòng)并設(shè)置COM1和COM2,其源代碼為:

BOOL CMultiThreadComApp::InitInstance()
{
 AfxEnableControlContainer();
 //打開并設(shè)置COM1
 hComm1=CreateFile("COM1", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL);
 if (hComm1==(HANDLE)-1)
 {
  AfxMessageBox("打開COM1失敗");
  return false;
 }
 else
 {
  DCB wdcb;
  GetCommState (hComm1,&wdcb);
  wdcb.BaudRate=9600;
  SetCommState (hComm1,&wdcb);
  PurgeComm(hComm1,PURGE_TXCLEAR);
 }
 //打開并設(shè)置COM2
 hComm2=CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL);
 if (hComm2==(HANDLE)-1)
 {
  AfxMessageBox("打開COM2失敗");
  return false;
 }
 else
 {
  DCB wdcb;
  GetCommState (hComm2,&wdcb);
  wdcb.BaudRate=9600;
  SetCommState (hComm2,&wdcb);
  PurgeComm(hComm2,PURGE_TXCLEAR);
 }

 CMultiThreadComDlg dlg;
 m_pMainWnd = &dlg;
 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
  // TODO: Place code here to handle when the dialog is
  // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
  // TODO: Place code here to handle when the dialog is
  // dismissed with Cancel
 }
 return FALSE;
}

  此后我們?cè)趯?duì)話框CMultiThreadComDlg的初始化函數(shù)OnInitDialog中啟動(dòng)兩個(gè)分別處理COM1和COM2的線程:

BOOL CMultiThreadComDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
  CString strAboutMenu;
  strAboutMenu.LoadString(IDS_ABOUTBOX);
  if (!strAboutMenu.IsEmpty())
  {
   pSysMenu->AppendMenu(MF_SEPARATOR);
   pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
  }
 }

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 //啟動(dòng)串口1處理線程
 DWORD nThreadId1;
 hCommThread1 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0,
(LPTHREAD_START_ROUTINE)Com1ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId1);
 if (hCommThread1 == NULL)
 {
  AfxMessageBox("創(chuàng)建串口1處理線程失敗");
  return false;
 }
 //啟動(dòng)串口2處理線程
 DWORD nThreadId2;
 hCommThread2 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0,
(LPTHREAD_START_ROUTINE)Com2ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId2);
 if (hCommThread2 == NULL)
 {
  AfxMessageBox("創(chuàng)建串口2處理線程失敗");
  return false;
 }

 return TRUE; // return TRUE unless you set the focus to a control
}

  兩個(gè)串口COM1和COM2對(duì)應(yīng)的線程處理函數(shù)等待串口上發(fā)生事件,并根據(jù)事件類型和自身緩沖區(qū)是否有數(shù)據(jù)要發(fā)送進(jìn)行相應(yīng)的處理,其源代碼為:

DWORD WINAPI Com1ThreadProcess(HWND hWnd//主窗口句柄)
{
 DWORD wEven;
 char str[10]; //讀入數(shù)據(jù)
 SetCommMask(hComm1, EV_RXCHAR | EV_TXEMPTY);
 while (TRUE)
 {
  WaitCommEvent(hComm1, &wEven, NULL);
  if(wEven = 0)
  {
   CloseHandle(hCommThread1);
   hCommThread1 = NULL;
   ExitThread(0);
  }
  else
  {
   switch (wEven)
   {
    case EV_TXEMPTY:
     if (wTxPos < wTxLen)
     {
      //在串口1寫入數(shù)據(jù)
      DWORD wCount; //寫入的字節(jié)數(shù)
      WriteFile(hComm1, com1Data.TxBuf[wTxPos], 1, &wCount, NULL);
      com1Data.wTxPos++;
     }
     break;
    case EV_RXCHAR:
     if (com1Data.wRxPos < com1Data.wRxLen)
     {
      //讀取串口數(shù)據(jù), 處理收到的數(shù)據(jù)
      DWORD wCount; //讀取的字節(jié)數(shù)
      ReadFile(hComm1, com1Data.RxBuf[wRxPos], 1, &wCount, NULL);
      com1Data.wRxPos++;
      if(com1Data.wRxPos== com1Data.wRxLen);
       ::PostMessage(hWnd, COM_SENDCHAR, 0, 1);
     }
     break;
    }
   }
  }
 }
 return TRUE;
}

DWORD WINAPI Com2ThreadProcess(HWND hWnd //主窗口句柄)
{
 DWORD wEven;
 char str[10]; //讀入數(shù)據(jù)
 SetCommMask(hComm2, EV_RXCHAR | EV_TXEMPTY);
 while (TRUE)
 {
  WaitCommEvent(hComm2, &wEven, NULL);
  if (wEven = 0)
  {
   CloseHandle(hCommThread2);
   hCommThread2 = NULL;
   ExitThread(0);
  }
  else
  {
   switch (wEven)
   {
    case EV_TXEMPTY:
     if (wTxPos < wTxLen)
     {
      //在串口2寫入數(shù)據(jù)
      DWORD wCount; //寫入的字節(jié)數(shù)
      WriteFile(hComm2, com2Data.TxBuf[wTxPos], 1, &wCount, NULL);
      com2Data.wTxPos++;
     }
     break;
    case EV_RXCHAR:
     if (com2Data.wRxPos < com2Data.wRxLen)
     {
      //讀取串口數(shù)據(jù), 處理收到的數(shù)據(jù)
      DWORD wCount; //讀取的字節(jié)數(shù)
      ReadFile(hComm2, com2Data.RxBuf[wRxPos], 1, &wCount, NULL);
      com2Data.wRxPos++;
      if(com2Data.wRxPos== com2Data.wRxLen);
       ::PostMessage(hWnd, COM_SENDCHAR, 0, 1);
     }
     break;
    }
   }
  }
  return TRUE;
 }

  線程控制函數(shù)中所操作的com1Data和com2Data是與串口對(duì)應(yīng)的數(shù)據(jù)結(jié)構(gòu)struct tagSerialPort的實(shí)例,這個(gè)數(shù)據(jù)結(jié)構(gòu)是:

typedef struct tagSerialPort
{
 BYTE RxBuf[SPRX_BUFLEN];//接收Buffer
 WORD wRxPos; //當(dāng)前接收字節(jié)位置
 WORD wRxLen; //要接收的字節(jié)數(shù)
 BYTE TxBuf[SPTX_BUFLEN];//發(fā)送Buffer
 WORD wTxPos; //當(dāng)前發(fā)送字節(jié)位置
 WORD wTxLen; //要發(fā)送的字節(jié)數(shù)
}SerialPort, * LPSerialPort;
3.多線程串口類

  使用多線程串口通信更方便的途徑是編寫一個(gè)多線程的串口類,例如Remon Spekreijse編寫了一個(gè)CSerialPort串口類。仔細(xì)分析這個(gè)類的源代碼,將十分有助于我們對(duì)先前所學(xué)多線程及同步知識(shí)的理解。

  3.1類的定義

#ifndef __SERIALPORT_H__
#define __SERIALPORT_H__

#define WM_COMM_BREAK_DETECTED WM_USER+1 // A break was detected on input.
#define WM_COMM_CTS_DETECTED WM_USER+2 // The CTS (clear-to-send) signal changed state.
#define WM_COMM_DSR_DETECTED WM_USER+3 // The DSR (data-set-ready) signal changed state.
#define WM_COMM_ERR_DETECTED WM_USER+4 // A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
#define WM_COMM_RING_DETECTED WM_USER+5 // A ring indicator was detected.
#define WM_COMM_RLSD_DETECTED WM_USER+6 // The RLSD (receive-line-signal-detect) signal changed state.
#define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer.
#define WM_COMM_RXFLAG_DETECTED WM_USER+8 // The event character was received and placed in the input buffer.
#define WM_COMM_TXEMPTY_DETECTED WM_USER+9 // The last character in the output buffer was sent.

class CSerialPort
{
 public:
  // contruction and destruction
  CSerialPort();
  virtual ~CSerialPort();

  // port initialisation
  BOOL InitPort(CWnd* pPortOwner, UINT portnr = 1, UINT baud = 19200, char parity = 'N', UINT databits = 8, UINT stopsbits = 1, DWORD dwCommEvents = EV_RXCHAR | EV_CTS, UINT nBufferSize = 512);

  // start/stop comm watching
  BOOL StartMonitoring();
  BOOL RestartMonitoring();
  BOOL StopMonitoring();

  DWORD GetWriteBufferSize();
  DWORD GetCommEvents();
  DCB GetDCB();

  void WriteToPort(char* string);

 protected:
  // protected memberfunctions
  void ProcessErrorMessage(char* ErrorText);
  static UINT CommThread(LPVOID pParam);
  static void ReceiveChar(CSerialPort* port, COMSTAT comstat);
  static void WriteChar(CSerialPort* port);

  // thread
  CWinThread* m_Thread;

  // synchronisation objects
  CRITICAL_SECTION m_csCommunicationSync;
  BOOL m_bThreadAlive;

  // handles
  HANDLE m_hShutdownEvent;
  HANDLE m_hComm;
  HANDLE m_hWriteEvent;

  // Event array.
  // One element is used for each event. There are two event handles for each port.
  // A Write event and a receive character event which is located in the overlapped structure (m_ov.hEvent).
  // There is a general shutdown when the port is closed.
  HANDLE m_hEventArray[3];

  // structures
  OVERLAPPED m_ov;
  COMMTIMEOUTS m_CommTimeouts;
  DCB m_dcb;

  // owner window
  CWnd* m_pOwner;

  // misc
  UINT m_nPortNr;
  char* m_szWriteBuffer;
  DWORD m_dwCommEvents;
  DWORD m_nWriteBufferSize;
 };

#endif __SERIALPORT_H__

  3.2類的實(shí)現(xiàn)

  3.2.1構(gòu)造函數(shù)與析構(gòu)函數(shù)

  進(jìn)行相關(guān)變量的賦初值及內(nèi)存恢復(fù):

CSerialPort::CSerialPort()
{
 m_hComm = NULL;

 // initialize overlapped structure members to zero
 m_ov.Offset = 0;
 m_ov.OffsetHigh = 0;

 // create events
 m_ov.hEvent = NULL;
 m_hWriteEvent = NULL;
 m_hShutdownEvent = NULL;

 m_szWriteBuffer = NULL;

 m_bThreadAlive = FALSE;
}

//
// Delete dynamic memory
//
CSerialPort::~CSerialPort()
{
 do
 {
  SetEvent(m_hShutdownEvent);
 }
 while (m_bThreadAlive);

 TRACE("Thread ended\n");

 delete []m_szWriteBuffer;
}

  3.2.2核心函數(shù):初始化串口

  在初始化串口函數(shù)中,將打開串口,設(shè)置相關(guān)參數(shù),并創(chuàng)建串口相關(guān)的用戶控制事件,初始化臨界區(qū)(Critical Section),以成隊(duì)的EnterCriticalSection()、LeaveCriticalSection()函數(shù)進(jìn)行資源的排它性訪問:

BOOL CSerialPort::InitPort(CWnd *pPortOwner,
// the owner (CWnd) of the port (receives message)
UINT portnr, // portnumber (1..4)
UINT baud, // baudrate
char parity, // parity
UINT databits, // databits
UINT stopbits, // stopbits
DWORD dwCommEvents, // EV_RXCHAR, EV_CTS etc
UINT writebuffersize) // size to the writebuffer
{
 assert(portnr > 0 && portnr < 5);
 assert(pPortOwner != NULL);

 // if the thread is alive: Kill
 if (m_bThreadAlive)
 {
  do
  {
   SetEvent(m_hShutdownEvent);
  }
  while (m_bThreadAlive);
  TRACE("Thread ended\n");
 }

 // create events
 if (m_ov.hEvent != NULL)
  ResetEvent(m_ov.hEvent);
  m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (m_hWriteEvent != NULL)
  ResetEvent(m_hWriteEvent);
  m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (m_hShutdownEvent != NULL)
  ResetEvent(m_hShutdownEvent);
  m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 // initialize the event objects
 m_hEventArray[0] = m_hShutdownEvent; // highest priority
 m_hEventArray[1] = m_ov.hEvent;
 m_hEventArray[2] = m_hWriteEvent;

 // initialize critical section
 InitializeCriticalSection(&m_csCommunicationSync);

 // set buffersize for writing and save the owner
 m_pOwner = pPortOwner;

 if (m_szWriteBuffer != NULL)
  delete []m_szWriteBuffer;
  m_szWriteBuffer = new char[writebuffersize];

  m_nPortNr = portnr;

  m_nWriteBufferSize = writebuffersize;
  m_dwCommEvents = dwCommEvents;

  BOOL bResult = FALSE;
  char *szPort = new char[50];
  char *szBaud = new char[50];

  // now it critical!
  EnterCriticalSection(&m_csCommunicationSync);

  // if the port is already opened: close it
 if (m_hComm != NULL)
 {
  CloseHandle(m_hComm);
  m_hComm = NULL;
 }

 // prepare port strings
 sprintf(szPort, "COM%d", portnr);
 sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d", baud, parity, databits,stopbits);

 // get a handle to the port
 m_hComm = CreateFile(szPort, // communication port string (COMX)
  GENERIC_READ | GENERIC_WRITE, // read/write types
  0, // comm devices must be opened with exclusive access
  NULL, // no security attributes
  OPEN_EXISTING, // comm devices must use OPEN_EXISTING
  FILE_FLAG_OVERLAPPED, // Async I/O
  0); // template must be 0 for comm devices

 if (m_hComm == INVALID_HANDLE_VALUE)
 {
  // port not found
  delete []szPort;
  delete []szBaud;
  return FALSE;
 }

 // set the timeout values
 m_CommTimeouts.ReadIntervalTimeout = 1000;
 m_CommTimeouts.ReadTotalTimeoutMultiplier = 1000;
 m_CommTimeouts.ReadTotalTimeoutConstant = 1000;
 m_CommTimeouts.WriteTotalTimeoutMultiplier = 1000;
 m_CommTimeouts.WriteTotalTimeoutConstant = 1000;

 // configure
 if (SetCommTimeouts(m_hComm, &m_CommTimeouts))
 {
  if (SetCommMask(m_hComm, dwCommEvents))
  {
   if (GetCommState(m_hComm, &m_dcb))
   {
    m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high!
    if (BuildCommDCB(szBaud, &m_dcb))
    {
     if (SetCommState(m_hComm, &m_dcb))
      ;
      // normal operation... continue
     else
      ProcessErrorMessage("SetCommState()");
    }
    else
     ProcessErrorMessage("BuildCommDCB()");
    }
   else
    ProcessErrorMessage("GetCommState()");
  }
  else
   ProcessErrorMessage("SetCommMask()");
 }
 else
  ProcessErrorMessage("SetCommTimeouts()");

 delete []szPort;
 delete []szBaud;

 // flush the port
 PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);

 // release critical section
 LeaveCriticalSection(&m_csCommunicationSync);

 TRACE("Initialisation for communicationport %d completed.\nUse Startmonitor to communicate.\n", portnr);

 return TRUE;
}
3.3.3核心函數(shù):串口線程控制函數(shù)

  串口線程處理函數(shù)是整個(gè)類中最核心的部分,它主要完成兩類工作:

  (1)利用WaitCommEvent函數(shù)對(duì)串口上發(fā)生的事件進(jìn)行獲取并根據(jù)事件的不同類型進(jìn)行相應(yīng)的處理;

 ?。?)利用WaitForMultipleObjects函數(shù)對(duì)串口相關(guān)的用戶控制事件進(jìn)行等待并做相應(yīng)處理。

UINT CSerialPort::CommThread(LPVOID pParam)
{
 // Cast the void pointer passed to the thread back to
 // a pointer of CSerialPort class
 CSerialPort *port = (CSerialPort*)pParam;

 // Set the status variable in the dialog class to
 // TRUE to indicate the thread is running.
 port->m_bThreadAlive = TRUE;

 // Misc. variables
 DWORD BytesTransfered = 0;
 DWORD Event = 0;
 DWORD CommEvent = 0;
 DWORD dwError = 0;
 COMSTAT comstat;
 BOOL bResult = TRUE;

 // Clear comm buffers at startup
 if (port->m_hComm)
  // check if the port is opened
  PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);

  // begin forever loop. This loop will run as long as the thread is alive.
  for (;;)
  {
   // Make a call to WaitCommEvent(). This call will return immediatly
   // because our port was created as an async port (FILE_FLAG_OVERLAPPED
   // and an m_OverlappedStructerlapped structure specified). This call will cause the
   // m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to
   // be placed in a non-signeled state if there are no bytes available to be read,
   // or to a signeled state if there are bytes available. If this event handle
   // is set to the non-signeled state, it will be set to signeled when a
   // character arrives at the port.

   // we do this for each port!

   bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);

   if (!bResult)
   {
    // If WaitCommEvent() returns FALSE, process the last error to determin
    // the reason..
    switch (dwError = GetLastError())
    {
     case ERROR_IO_PENDING:
     {
      // This is a normal return value if there are no bytes
      // to read at the port.
      // Do nothing and continue
      break;
     }
     case 87:
     {
      // Under Windows NT, this value is returned for some reason.
      // I have not investigated why, but it is also a valid reply
      // Also do nothing and continue.
      break;
     }
     default:
     {
      // All other error codes indicate a serious error has
      // occured. Process this error.
      port->ProcessErrorMessage("WaitCommEvent()");
      break;
     }
    }
   }
   else
   {
    // If WaitCommEvent() returns TRUE, check to be sure there are
    // actually bytes in the buffer to read.
    //
    // If you are reading more than one byte at a time from the buffer
    // (which this program does not do) you will have the situation occur
    // where the first byte to arrive will cause the WaitForMultipleObjects()
    // function to stop waiting. The WaitForMultipleObjects() function
    // resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state
    // as it returns.
    //
    // If in the time between the reset of this event and the call to
    // ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again
    // to the signeled state. When the call to ReadFile() occurs, it will
    // read all of the bytes from the buffer, and the program will
    // loop back around to WaitCommEvent().
    //
    // At this point you will be in the situation where m_OverlappedStruct.hEvent is set,
    // but there are no bytes available to read. If you proceed and call
    // ReadFile(), it will return immediatly due to the async port setup, but
    // GetOverlappedResults() will not return until the next character arrives.
    //
    // It is not desirable for the GetOverlappedResults() function to be in
    // this state. The thread shutdown event (event 0) and the WriteFile()
    // event (Event2) will not work if the thread is blocked by GetOverlappedResults().
    //
    // The solution to this is to check the buffer with a call to ClearCommError().
    // This call will reset the event handle, and if there are no bytes to read
    // we can loop back through WaitCommEvent() again, then proceed.
    // If there are really bytes to read, do nothing and proceed.

    bResult = ClearCommError(port->m_hComm, &dwError, &comstat);

    if (comstat.cbInQue == 0)
     continue;
   } // end if bResult

   // Main wait function. This function will normally block the thread
   // until one of nine events occur that require action.
   Event = WaitForMultipleObjects(3, port->m_hEventArray, FALSE, INFINITE);

   switch (Event)
   {
    case 0:
    {
     // Shutdown event. This is event zero so it will be
     // the higest priority and be serviced first.

     port->m_bThreadAlive = FALSE;

     // Kill this thread. break is not needed, but makes me feel better.
     AfxEndThread(100);
     break;
    }
    case 1:
    // read event
    {
     GetCommMask(port->m_hComm, &CommEvent);
     if (CommEvent &EV_CTS)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_CTS_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_RXFLAG)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RXFLAG_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_BREAK)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_BREAK_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_ERR)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_ERR_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_RING)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RING_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_RXCHAR)
      // Receive character event from port.
      ReceiveChar(port, comstat);
    break;
   }
   case 2:
   // write event
   {
    // Write character event from port
    WriteChar(port);
    break;
   }
  } // end switch
 } // close forever loop
 return 0;
}

  下列三個(gè)函數(shù)用于對(duì)串口線程進(jìn)行啟動(dòng)、掛起和恢復(fù):

//
// start comm watching
//
BOOL CSerialPort::StartMonitoring()
{
 if (!(m_Thread = AfxBeginThread(CommThread, this)))
  return FALSE;
 TRACE("Thread started\n");
 return TRUE;
}

//
// Restart the comm thread
//
BOOL CSerialPort::RestartMonitoring()
{
 TRACE("Thread resumed\n");
 m_Thread->ResumeThread();
 return TRUE;
}

//
// Suspend the comm thread
//
BOOL CSerialPort::StopMonitoring()
{
 TRACE("Thread suspended\n");
 m_Thread->SuspendThread();
 return TRUE;
}

  3.3.4讀寫串口

  下面一組函數(shù)是用戶對(duì)串口進(jìn)行讀寫操作的接口:

//
// Write a character.
//
void CSerialPort::WriteChar(CSerialPort *port)
{
 BOOL bWrite = TRUE;
 BOOL bResult = TRUE;

 DWORD BytesSent = 0;

 ResetEvent(port->m_hWriteEvent);

 // Gain ownership of the critical section
 EnterCriticalSection(&port->m_csCommunicationSync);

 if (bWrite)
 {
  // Initailize variables
  port->m_ov.Offset = 0;
  port->m_ov.OffsetHigh = 0;

  // Clear buffer
  PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);

  bResult = WriteFile(port->m_hComm, // Handle to COMM Port
    port->m_szWriteBuffer, // Pointer to message buffer in calling finction
    strlen((char*)port->m_szWriteBuffer), // Length of message to send
    &BytesSent, // Where to store the number of bytes sent
    &port->m_ov); // Overlapped structure

  // deal with any error codes
  if (!bResult)
  {
   DWORD dwError = GetLastError();
   switch (dwError)
   {
    case ERROR_IO_PENDING:
    {
     // continue to GetOverlappedResults()
     BytesSent = 0;
     bWrite = FALSE;
     break;
    }
    default:
    {
     // all other error codes
     port->ProcessErrorMessage("WriteFile()");
    }
   }
  }
  else
  {
   LeaveCriticalSection(&port->m_csCommunicationSync);
  }
 } // end if(bWrite)

 if (!bWrite)
 {
  bWrite = TRUE;

  bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
   &port->m_ov, // Overlapped structure
   &BytesSent, // Stores number of bytes sent
  TRUE); // Wait flag

  LeaveCriticalSection(&port->m_csCommunicationSync);

  // deal with the error code
  if (!bResult)
  {
   port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()");
  }
 } // end if (!bWrite)

 // Verify that the data size send equals what we tried to send
 if (BytesSent != strlen((char*)port->m_szWriteBuffer))
 {
  TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d\n",
  BytesSent, strlen((char*)port->m_szWriteBuffer));
 }
}

//
// Character received. Inform the owner
//
void CSerialPort::ReceiveChar(CSerialPort *port, COMSTAT comstat)
{
 BOOL bRead = TRUE;
 BOOL bResult = TRUE;
 DWORD dwError = 0;
 DWORD BytesRead = 0;
 unsigned char RXBuff;

 for (;;)
 {
  // Gain ownership of the comm port critical section.
  // This process guarantees no other part of this program
  // is using the port object.

  EnterCriticalSection(&port->m_csCommunicationSync);

  // ClearCommError() will update the COMSTAT structure and
  // clear any other errors.

  bResult = ClearCommError(port->m_hComm, &dwError, &comstat);

  LeaveCriticalSection(&port->m_csCommunicationSync);

  // start forever loop. I use this type of loop because I
  // do not know at runtime how many loops this will have to
  // run. My solution is to start a forever loop and to
  // break out of it when I have processed all of the
  // data available. Be careful with this approach and
  // be sure your loop will exit.
  // My reasons for this are not as clear in this sample
  // as it is in my production code, but I have found this
  // solutiion to be the most efficient way to do this.

  if (comstat.cbInQue == 0)
  {
   // break out when all bytes have been read
   break;
  }

  EnterCriticalSection(&port->m_csCommunicationSync);

  if (bRead)
  {
   bResult = ReadFile(port->m_hComm, // Handle to COMM port
    &RXBuff, // RX Buffer Pointer
    1, // Read one byte
    &BytesRead, // Stores number of bytes read
    &port->m_ov); // pointer to the m_ov structure
   // deal with the error code
   if (!bResult)
   {
    switch (dwError = GetLastError())
    {
     case ERROR_IO_PENDING:
     {
      // asynchronous i/o is still in progress
      // Proceed on to GetOverlappedResults();
      bRead = FALSE;
      break;
     }
     default:
     {
      // Another error has occured. Process this error.
      port->ProcessErrorMessage("ReadFile()");
      break;
     }
    }
   }
   else
   {
    // ReadFile() returned complete. It is not necessary to call GetOverlappedResults()
    bRead = TRUE;
   }
  } // close if (bRead)

  if (!bRead)
  {
   bRead = TRUE;
   bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
    &port->m_ov, // Overlapped structure
    &BytesRead, // Stores number of bytes read
    TRUE); // Wait flag

   // deal with the error code
   if (!bResult)
   {
    port->ProcessErrorMessage("GetOverlappedResults() in ReadFile()");
   }
  } // close if (!bRead)

  LeaveCriticalSection(&port->m_csCommunicationSync);

  // notify parent that a byte was received
  ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_RXCHAR, (WPARAM)RXBuff,(LPARAM)port->m_nPortNr);
 } // end forever loop

}

//
// Write a string to the port
//
void CSerialPort::WriteToPort(char *string)
{
 assert(m_hComm != 0);

 memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer));
 strcpy(m_szWriteBuffer, string);

 // set event for write
 SetEvent(m_hWriteEvent);
}

//
// Return the output buffer size
//
DWORD CSerialPort::GetWriteBufferSize()
{
 return m_nWriteBufferSize;
}
3.3.5控制接口

  應(yīng)用程序員使用下列一組public函數(shù)可以獲取串口的DCB及串口上發(fā)生的事件:

//
// Return the device control block
//
DCB CSerialPort::GetDCB()
{
 return m_dcb;
}

//
// Return the communication event masks
//
DWORD CSerialPort::GetCommEvents()
{
 return m_dwCommEvents;
}

  3.3.6錯(cuò)誤處理

//
// If there is a error, give the right message
//
void CSerialPort::ProcessErrorMessage(char *ErrorText)
{
 char *Temp = new char[200];

 LPVOID lpMsgBuf;

 FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
  NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  // Default language
  (LPTSTR) &lpMsgBuf, 0, NULL);

 sprintf(Temp,
  "WARNING: %s Failed with the following error: \n%s\nPort: %d\n", (char*)
  ErrorText, lpMsgBuf, m_nPortNr);
 MessageBox(NULL, Temp, "Application Error", MB_ICONSTOP);

 LocalFree(lpMsgBuf);
 delete []Temp;
}

  仔細(xì)分析Remon Spekreijse的CSerialPort類對(duì)我們理解多線程及其同步機(jī)制是大有益處的,從http://codeguru.earthweb.com/network/serialport.shtml我們可以獲取CSerialPort類的介紹與工程實(shí)例。另外,電子工業(yè)出版社《Visual C++/Turbo C串口通信編程實(shí)踐》一書的作者龔建偉也編寫了一個(gè)使用CSerialPort類的例子,可以從http://www.gjwtech.com/scomm/sc2serialportclass.htm獲得詳情。

  4.多線程網(wǎng)絡(luò)通信

  在網(wǎng)絡(luò)通信中使用多線程主要有兩種途徑,即主監(jiān)控線程和線程池。

  4.1主監(jiān)控線程

  這種方式指的是程序中使用一個(gè)主線程監(jiān)控某特定端口,一旦在這個(gè)端口上發(fā)生連接請(qǐng)求,則主監(jiān)控線程動(dòng)態(tài)使用CreateThread派生出新的子線程處理該請(qǐng)求。主線程在派生子線程后不再對(duì)子線程加以控制和調(diào)度,而由子線程獨(dú)自和客戶方發(fā)生連接并處理異常。

  使用這種方法的優(yōu)點(diǎn)是:

 ?。?)可以較快地實(shí)現(xiàn)原型設(shè)計(jì),尤其在用戶數(shù)目較少、連接保持時(shí)間較長時(shí)有表現(xiàn)較好;

 ?。?)主線程不與子線程發(fā)生通信,在一定程度上減少了系統(tǒng)資源的消耗。

  其缺點(diǎn)是:

 ?。?)生成和終止子線程的開銷比較大;

 ?。?)對(duì)遠(yuǎn)端用戶的控制較弱。

  這種多線程方式總的特點(diǎn)是"動(dòng)態(tài)生成,靜態(tài)調(diào)度"。

  4.2線程池

  這種方式指的是主線程在初始化時(shí)靜態(tài)地生成一定數(shù)量的懸掛子線程,放置于線程池中。隨后,主線程將對(duì)這些懸掛子線程進(jìn)行動(dòng)態(tài)調(diào)度。一旦客戶發(fā)出連接請(qǐng)求,主線程將從線程池中查找一個(gè)懸掛的子線程:

 ?。?)如果找到,主線程將該連接分配給這個(gè)被發(fā)現(xiàn)的子線程。子線程從主線程處接管該連接,并與用戶通信。當(dāng)連接結(jié)束時(shí),該子線程將自動(dòng)懸掛,并進(jìn)人線程池等待再次被調(diào)度;

 ?。?)如果當(dāng)前已沒有可用的子線程,主線程將通告發(fā)起連接的客戶。

  使用這種方法進(jìn)行設(shè)計(jì)的優(yōu)點(diǎn)是:

 ?。?)主線程可以更好地對(duì)派生的子線程進(jìn)行控制和調(diào)度;

 ?。?)對(duì)遠(yuǎn)程用戶的監(jiān)控和管理能力較強(qiáng)。

  雖然主線程對(duì)子線程的調(diào)度要消耗一定的資源,但是與主監(jiān)控線程方式中派生和終止線程所要耗費(fèi)的資源相比,要少很多。因此,使用該種方法設(shè)計(jì)和實(shí)現(xiàn)的系統(tǒng)在客戶端連接和終止變更頻繁時(shí)有上佳表現(xiàn)。

  這種多線程方式總的特點(diǎn)是"靜態(tài)生成,動(dòng)態(tài)調(diào)度"。  
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
深入淺出Win32多線程程序設(shè)計(jì)之綜合實(shí)例
WINCE下如何使用串口
線程的使用
VC 中進(jìn)程與多進(jìn)程管理的方法
windows 事件
利用Win32 Debug API打造自己的調(diào)試器Debugger
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服