国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
數(shù)據(jù)挖掘10大算法(from ICDM 2006)
ACMKDD Innovation Award and IEEE ICDM Research Contributions Award winnerswere invited in September 2006 to each nominate up to 10 best-knownalgorithms.  The 18 candidates are: (http://www.cs.uvm.edu/~icdm/algorithms/CandidateList.shtml)
Classification
==============
 #1. C4.5
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.
        
Google Scholar Count in October 2006: 6907
 
 #2. CART
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.
Google Scholar Count in October 2006: 6078
 
 #3. K Nearest Neighbours (kNN)
Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest
Neighbor Classification. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616. 
DOI= http://dx.doi.org/10.1109/34.506411
Google SCholar Count: 183
 
 #4. Naive Bayes
Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?
Internat. Statist. Rev. 69, 385-398.
Google Scholar Count in October 2006: 51
 
 
Statistical Learning
====================
 #5. SVM
Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.
Google Scholar Count in October 2006: 6441
 
 #6. EM
McLachlan, G. and Peel, D. (2000). Finite Mixture Models. 
J. Wiley, New York.
Google Scholar Count in October 2006: 848
 
Association Analysis
====================
 #7. Apriori
Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th Int'l Conference on Very Large
Databases (VLDB '94), Santiago, Chile, September 1994. 
http://citeseer.comp.nus.edu.sg/agrawal94fast.html
 
Google Scholar Count in October 2006: 3639
 #8. FP-Tree
Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD
international Conference on Management of Data (Dallas, Texas, United
States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.
DOI= http://doi.acm.org/10.1145/342009.335372
Google Scholar Count in October 2006: 1258
 
Link Mining
===========
 #9. PageRank
Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh international
Conference on World Wide Web (WWW-7) (Brisbane,
Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, 107-117. 
DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X
Google Shcolar Count: 2558
 
 #10. HITS
Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, California, United States, January
25 - 27, 1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 668-677.
Google Shcolar Count: 2240
 
 
Clustering
==========
 #11. K-Means
MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, 1967, pp. 281-297.
Google Scholar Count in October 2006: 1579
 
 #12. BIRCH
Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international Conference on Management of Data
(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed. 
SIGMOD '96. ACM Press, New York, NY, 103-114. 
DOI= http://doi.acm.org/10.1145/233269.233324
Google Scholar Count in October 2006: 853
 
Bagging and Boosting
====================
 #13. AdaBoost
Freund, Y. and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139. 
DOI= http://dx.doi.org/10.1006/jcss.1997.1504
Google Scholar Count in October 2006: 1576
 
Sequential Patterns
===================
 #14. GSP
Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th international Conference on Extending Database Technology:
Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,
M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer
Science, vol. 1057. Springer-Verlag, London, 3-17.
Google Scholar Count in October 2006: 596
 
 #15. PrefixSpan
J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and
M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings of the 17th
international Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society, Washington, DC.
Google Scholar Count in October 2006: 248
 
Integrated Mining
=================
 #16. CBA
Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98, 1998, pp. 80-86. 
http://citeseer.comp.nus.edu.sg/liu98integrating.html
Google Scholar Count in October 2006: 436
                
Rough Sets
==========
 #17. Finding reduct
Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Norwell, MA, 1992
Google Scholar Count in October 2006: 329
 
Graph Mining
============
 #18. gSpan
Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer
Society, Washington, DC.
Google Scholar Count in October 2006: 155
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
數(shù)據(jù)挖掘十大經(jīng)典算法
DMman(數(shù)據(jù)挖掘青年)--數(shù)據(jù)挖掘經(jīng)典算法(轉(zhuǎn))
個(gè)性化推薦十大挑戰(zhàn)[科普+完整版本] 精選
聚類論文資源和源代碼
ASONAM 2014 Industry Track Call for Papers
除了google scholar ,還有...
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服