国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
最簡(jiǎn)潔的Python時(shí)間序列可視化實(shí)現(xiàn)

TUSHARE  金融與技術(shù)學(xué)習(xí)興趣小組 

翻譯整理、編輯 | 一只小綠怪獸

譯者簡(jiǎn)介:北京第二外國(guó)語(yǔ)學(xué)院國(guó)際商務(wù)專業(yè)研一在讀,目前在學(xué)習(xí)Python編程和量化投資相關(guān)知識(shí)。

作者:DataCamp

時(shí)間序列數(shù)據(jù)在數(shù)據(jù)科學(xué)領(lǐng)域無(wú)處不在,在量化金融領(lǐng)域也十分常見,可以用于分析價(jià)格趨勢(shì),預(yù)測(cè)價(jià)格,探索價(jià)格行為等。

學(xué)會(huì)對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行可視化,能夠幫助我們更加直觀地探索時(shí)間序列數(shù)據(jù),尋找其潛在的規(guī)律。

本文會(huì)利用Python中的matplotlib【1】庫(kù),并配合實(shí)例進(jìn)行講解。matplotlib庫(kù)是?個(gè)?于創(chuàng)建出版質(zhì)量圖表的桌?繪圖包(2D繪圖庫(kù)),是Python中最基本的可視化工具。

【工具】Python 3

【數(shù)據(jù)】Tushare

【注】示例注重的是方法的講解,請(qǐng)大家靈活掌握。

01

單個(gè)時(shí)間序列

首先,我們從tushare.pro獲取指數(shù)日線行情數(shù)據(jù),并查看數(shù)據(jù)類型。

import tushare as ts
import pandas as pd


pd.set_option('expand_frame_repr'False)  # 顯示所有列
ts.set_token('your token')
pro = ts.pro_api()

df = pro.index_daily(ts_code='399300.SZ')[['trade_date''close']]
df.sort_values('trade_date', inplace=True
df.reset_index(inplace=True, drop=True)

print(df.head())

  trade_date    close
0   20050104  982.794
1   20050105  992.564
2   20050106  983.174
3   20050107  983.958
4   20050110  993.879

print(df.dtypes)

trade_date     object
close         float64
dtype: object

交易時(shí)間列'trade_date' 不是時(shí)間類型,而且也不是索引,需要先進(jìn)行轉(zhuǎn)化。

df['trade_date'] = pd.to_datetime(df['trade_date'])
df.set_index('trade_date', inplace=True)

print(df.head())

              close
trade_date         
2005-01-04  982.794
2005-01-05  992.564
2005-01-06  983.174
2005-01-07  983.958
2005-01-10  993.879

接下來,就可以開始畫圖了,我們需要導(dǎo)入matplotlib.pyplot【2】,然后通過設(shè)置set_xlabel()set_xlabel()為x軸和y軸添加標(biāo)簽。

import matplotlib.pyplot as plt


ax = df.plot(color='')
ax.set_xlabel('trade_date')
ax.set_ylabel('399300.SZ close')
plt.show()

matplotlib庫(kù)中有很多內(nèi)置圖表樣式可以選擇,通過打印plt.style.available查看具體都有哪些選項(xiàng),應(yīng)用的時(shí)候直接調(diào)用plt.style.use('fivethirtyeight')即可。

print(plt.style.available)

['bmh''classic''dark_background''fast''fivethirtyeight''ggplot''grayscale''seaborn-bright''seaborn-colorblind''seaborn-dark-palette''seaborn-dark''seaborn-darkgrid''seaborn-deep''seaborn-muted''seaborn-notebook''seaborn-paper''seaborn-pastel''seaborn-poster''seaborn-talk''seaborn-ticks''seaborn-white''seaborn-whitegrid''seaborn''Solarize_Light2''tableau-colorblind10''_classic_test']

plt.style.use('fivethirtyeight')
ax1 = df.plot()
ax1.set_title('FiveThirtyEight Style')
plt.show()

02

設(shè)置更多細(xì)節(jié)

上面畫出的是一個(gè)很簡(jiǎn)單的折線圖,其實(shí)可以在plot()里面通過設(shè)置不同參數(shù)的值,為圖添加更多細(xì)節(jié),使其更美觀、清晰。

figsize(width, height)設(shè)置圖的大小,linewidth設(shè)置線的寬度,fontsize設(shè)置字體大小。然后,調(diào)用set_title()方法設(shè)置標(biāo)題。

ax = df.plot(color='blue', figsize=(83), linewidth=2, fontsize=6)
ax.set_title('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8)
plt.show()

如果想要看某一個(gè)子時(shí)間段內(nèi)的折線變化情況,可以直接截取該時(shí)間段再作圖即可,如df['2018-01-01': '2019-01-01']

df_subset_1 = df['2018-01-01':'2019-01-01']
ax = df_subset_1.plot(color='blue', fontsize=10)
plt.show()

如果想要突出圖中的某一日期或者觀察值,可以調(diào)用.axvline().axhline()方法添加垂直和水平參考線。

ax = df.plot(color='blue', fontsize=6)
ax.axvline('2019-01-01', color='red', linestyle='--')
ax.axhline(3000, color='green', linestyle='--')
plt.show()

也可以調(diào)用axvspan()的方法為一段時(shí)間添加陰影標(biāo)注,其中alpha參數(shù)設(shè)置的是陰影的透明度,0代表完全透明,1代表全色。

ax = df.plot(color='blue', fontsize=6)
ax.axvspan('2018-01-01''2019-01-01', color='red', alpha=0.3)
ax.axhspan(20003000, color='green', alpha=0.7)
plt.show()

03

移動(dòng)平均時(shí)間序列

有時(shí)候,我們想要觀察某個(gè)窗口期的移動(dòng)平均值的變化趨勢(shì),可以通過調(diào)用窗口函數(shù)rolling來實(shí)現(xiàn)。下面實(shí)例中顯示的是,以250天為窗口期的移動(dòng)平均線close,以及與移動(dòng)標(biāo)準(zhǔn)差的關(guān)系構(gòu)建的上下兩個(gè)通道線upper和lower。

ma = df.rolling(window=250).mean()
mstd = df.rolling(window=250).std()

ma['upper'] = ma['close'] + (mstd['close'] * 2)
ma['lower'] = ma['close'] - (mstd['close'] * 2)

ax = ma.plot(linewidth=0.8, fontsize=6)
ax.set_xlabel('trade_date', fontsize=8)
ax.set_ylabel('399300.SZ close from 2005-01-04 to 2019-07-04', fontsize=8)
ax.set_title('Rolling mean and variance of 399300.SZ cloe from 2005-01-04 to 2019-07-04', fontsize=10)
plt.show()

04

多個(gè)時(shí)間序列

如果想要可視化多個(gè)時(shí)間序列數(shù)據(jù),同樣可以直接調(diào)用plot()方法。示例中我們從tushare.pro上面選取三只股票的日線行情數(shù)據(jù)進(jìn)行分析。

# 獲取數(shù)據(jù)
code_list = ['000001.SZ''000002.SZ''600000.SH']
data_list = []
for code in code_list:
    print(code)
    df = pro.daily(ts_code=code, start_date='20180101', end_date='20190101')[['trade_date''close']]
    df.sort_values('trade_date', inplace=True)
    df.rename(columns={'close': code}, inplace=True)
    df.set_index('trade_date', inplace=True)
    data_list.append(df)
df = pd.concat(data_list, axis=1)
print(df.head())

000001.SZ
000002.SZ
600000.SH
            000001.SZ  000002.SZ  600000.SH
trade_date                                 
20180102        13.70      32.56      12.72
20180103        13.33      32.33      12.66
20180104        13.25      33.12      12.66
20180105        13.30      34.76      12.69
20180108        12.96      35.99      12.68

# 畫圖
ax = df.plot(linewidth=2, fontsize=12)
ax.set_xlabel('trade_date')
ax.legend(fontsize=15)
plt.show()

調(diào)用.plot.area()方法可以生成時(shí)間序列數(shù)據(jù)的面積圖,顯示累計(jì)的總數(shù)。

ax = df.plot.area(fontsize=12)
ax.set_xlabel('trade_date')
ax.legend(fontsize=15)
plt.show()

如果想要在不同子圖中單獨(dú)顯示每一個(gè)時(shí)間序列,可以通過設(shè)置參數(shù)subplots=True來實(shí)現(xiàn)。layout指定要使用的行列數(shù),sharexsharey用于設(shè)置是否共享行和列,colormap='viridis' 為每條線設(shè)置不同的顏色。

df.plot(subplots=True,
          layout=(22),
          sharex=False,
          sharey=False,
          colormap='viridis',
          fontsize=7,
          legend=False,
          linewidth=0.3)

plt.show()

05

總結(jié)

本文主要介紹了如何利用Python中的matplotlib庫(kù)對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行一些簡(jiǎn)單的可視化操作,包括可視化單個(gè)時(shí)間序列并設(shè)置圖中的細(xì)節(jié),可視化移動(dòng)平均時(shí)間序列和多個(gè)時(shí)間序列。

相關(guān)的官方文檔和參考資料已附下面,感興趣的話可以自行查閱更多內(nèi)容!

END

本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
python——畫圖之seaborn學(xué)習(xí)——折線圖和柱形圖的組合。
Matplotlib+Seaborn:一文掌握Python可視化庫(kù)的兩大王者
Python數(shù)據(jù)可視化
六種數(shù)據(jù)分析的基本可視化
從零開始學(xué)Python【18】--matplotlib(熱力圖)
干貨:12個(gè)案例教你用Python玩轉(zhuǎn)數(shù)據(jù)可視化(建議收藏)
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服