国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
一文教你多種5V轉(zhuǎn)3.3V電平應(yīng)用電路設(shè)計

技巧11

5V→3.3V有源鉗位

使用二極管鉗位有一個問題,即它將向 3.3V 電源注入電流。在具有高電流 5V 輸出且輕載 3.3V 電源軌的設(shè)計中,這種電流注入可能會使 3.3V 電源電壓超過 3.3V。為了避免這個問題,可以用一個三極管來替代,三極管使過量的輸出驅(qū)動電流流向地,而不是 3.3V 電源。設(shè)計的電路如圖 11-1 所示。

Q1的基極-發(fā)射極結(jié)所起的作用與二極管鉗位電路中的二極管相同。區(qū)別在于,發(fā)射極電流只有百分之幾流出基極進(jìn)入 3.3V 軌,絕大部分電流都流向集電極,再從集電極無害地流入地?;鶚O電流與集電極電流之比,由晶體管的電流增益決定,通常為10-400,取決于所使用的晶體管。

技巧12

5V→3.3V電阻分壓器

可以使用簡單的電阻分壓器將 5V 器件的輸出降低到適用于 3.3V 器件輸入的電平。這種接口的等效電路如圖 12-1 所示。

通常,源電阻 RS 非常小 (小于 10Ω),如果選擇的 R1 遠(yuǎn)大于RS 的話,那么可以忽略 RS 對 R1 的影響。在接收端,負(fù)載電阻 RL 非常大 (大于500 kΩ),如果選擇的R2遠(yuǎn)小于RL的話,那么可以忽略 RL 對 R2 的影響。

在功耗和瞬態(tài)時間之間存在取舍權(quán)衡。為了使接口電流的功耗需求最小,串聯(lián)電阻 R1 和 R2 應(yīng)盡可能大。但是,負(fù)載電容 (由雜散電容 CS 和 3.3V 器件的輸入電容 CL 合成)可能會對輸入信號的上升和下降時間產(chǎn)生不利影響。如果 R1 和 R2 過大,上升和下降時間可能會過長而無法接受。

如果忽略 RS 和 RL 的影響,則確定 R1 和 R2 的式子由下面的公式 12-1 給出。

公式 12-2 給出了確定上升和下降時間的公式。為便于電路分析,使用戴維寧等效計算來確定外加電壓 VA 和串聯(lián)電阻R。戴維寧等效計算定義為開路電壓除以短路電流。根據(jù)公式 12-2 所施加的限制,對于圖 12-1 所示電路,確定的戴維寧等效電阻 R 應(yīng)為 0.66*R1,戴維寧等效電壓 VA 應(yīng)為0.66*VS。

例如,假設(shè)有下列條件存在:

· 雜散電容 = 30 pF

· 負(fù)載電容 = 5 pF

· 從 0.3V 至 3V 的最大上升時間 ≤ 1 μs

· 外加源電壓 Vs = 5V

確定最大電阻的計算如公式 12-3 所示。

技巧13

3.3V→5V電平轉(zhuǎn)換器

盡管電平轉(zhuǎn)換可以分立地進(jìn)行,但通常使用集成解決方案較受歡迎。電平轉(zhuǎn)換器的使用范圍比較廣泛:有單向和雙向配置、不同的電壓轉(zhuǎn)換和不同的速度,供用戶選擇最佳的解決方案。

器件之間的板級通訊 (例如, MCU 至外設(shè))通過 SPI 或 I2C? 來進(jìn)行,這是最常見的。對于SPI,使用單向電平轉(zhuǎn)換器比較合適;對于 I2C,就需要使用雙向解決方案。下面的圖 13-1 顯示了這兩種解決方案。

模擬

3.3V 至 5V 接口的最后一項挑戰(zhàn)是如何轉(zhuǎn)換模擬信號,使之跨越電源障礙。低電平信號可能不需要外部電路,但在 3.3V 與 5V 之間傳送信號的系統(tǒng)則會受到電源變化的影響。例如,在 3.3V 系統(tǒng)中,ADC轉(zhuǎn)換1V峰值的模擬信號,其分辨率要比5V系統(tǒng)中 ADC 轉(zhuǎn)換的高,這是因為在 3.3V ADC 中,ADC 量程中更多的部分用于轉(zhuǎn)換。但另一方面,3.3V 系統(tǒng)中相對較高的信號幅值,與系統(tǒng)較低的共模電壓限制可能會發(fā)生沖突。

因此,為了補(bǔ)償上述差異,可能需要某種接口電路。本節(jié)將討論接口電路,以幫助緩和信號在不同電源之間轉(zhuǎn)換的問題。

技巧14

3.3V→5V模擬增益模塊

從 3.3V 電源連接至 5V 時,需要提升模擬電壓。33 kΩ 和 17kΩ 電阻設(shè)定了運(yùn)放的增益,從而在兩端均使用滿量程。11 kΩ 電阻限制了流回 3.3V 電路的電流。

技巧15

3.3V→5V模擬補(bǔ)償模塊

該模塊用于補(bǔ)償 3.3V 轉(zhuǎn)換到 5V 的模擬電壓。下面是將 3.3V 電源供電的模擬電壓轉(zhuǎn)換為由 5V電源供電。右上方的 147 kΩ、 30.1 kΩ 電阻以及+5V 電源,等效于串聯(lián)了 25 kΩ 電阻的 0.85V 電壓源。這個等效的 25 kΩ 電阻、三個 25 kΩ 電阻以及運(yùn)放構(gòu)成了增益為 1 V/V 的差動放大器。 0.85V等效電壓源將出現(xiàn)在輸入端的任何信號向上平移相同的幅度;以 3.3V/2 = 1.65V 為中心的信號將同時以 5.0V/2 = 2.50V 為中心。左上方的電阻限制了來自 5V 電路的電流。

技巧16

5V→3.3V有源模擬衰減器

此技巧使用運(yùn)算放大器衰減從 5V 至 3.3V 系統(tǒng)的信號幅值。

要將 5V 模擬信號轉(zhuǎn)換為 3.3V 模擬信號,最簡單的方法是使用 R1:R2 比值為 1.7:3.3 的電阻分壓器。然而,這種方法存在一些問題。

1)衰減器可能會接至容性負(fù)載,構(gòu)成不期望得到的低通濾波器。

2)衰減器電路可能需要從高阻抗源驅(qū)動低阻抗負(fù)載。

無論是哪種情形,都需要運(yùn)算放大器用以緩沖信號。

所需的運(yùn)放電路是單位增益跟隨器 (見圖 16-1)。

電路輸出電壓與加在輸入的電壓相同。

為了把 5V 信號轉(zhuǎn)換為較低的 3V 信號,我們只要加上電阻衰減器即可。

如果電阻分壓器位于單位增益跟隨器之前,那么將為 3.3V 電路提供最低的阻抗。此外,運(yùn)放可以從3.3V 供電,這將節(jié)省一些功耗。如果選擇的 X 非常大的話, 5V 側(cè)的功耗可以最大限度地減小。

如果衰減器位于單位增益跟隨器之后,那么對 5V源而言就有最高的阻抗。運(yùn)放必須從 5V 供電,3V 側(cè)的阻抗將取決于 R1||R2 的值。

技巧17

5V→3.3V模擬限幅器

在將 5V 信號傳送給 3.3V 系統(tǒng)時,有時可以將衰減用作增益。如果期望的信號小于 5V,那么把信號直接送入 3.3V ADC 將產(chǎn)生較大的轉(zhuǎn)換值。當(dāng)信號接近 5V 時就會出現(xiàn)危險。所以,需要控制電壓越限的方法,同時不影響正常范圍中的電壓。這里將討論三種實現(xiàn)方法。

1. 使用二極管,鉗位過電壓至 3.3V 供電系統(tǒng)。

2. 使用齊納二極管,把電壓鉗位至任何期望的電壓限。

3. 使用帶二極管的運(yùn)算放大器,進(jìn)行精確鉗位。

進(jìn)行過電壓鉗位的最簡單的方法,與將 5V 數(shù)字信號連接至 3.3V 數(shù)字信號的簡單方法完全相同。使用電阻和二極管,使過量電流流入 3.3V 電源。選用的電阻值必須能夠保護(hù)二極管和 3.3V 電源,同時還不會對模擬性能造成負(fù)面影響。如果 3.3V 電源的阻抗太低,那么這種類型的鉗位可能致使3.3V 電源電壓上升。即使 3.3V 電源有很好的低阻抗,當(dāng)二極管導(dǎo)通時,以及在頻率足夠高的情況下,當(dāng)二極管沒有導(dǎo)通時 (由于有跨越二極管的寄生電容),此類鉗位都將使輸入信號向 3.3V 電源施加噪聲。

為了防止輸入信號對電源造成影響,或者為了使輸入應(yīng)對較大的瞬態(tài)電流時更為從容,對前述方法稍加變化,改用齊納二極管。齊納二極管的速度通常要比第一個電路中所使用的快速信號二極管慢。不過,齊納鉗位一般來說更為結(jié)實,鉗位時不依賴于電源的特性參數(shù)。鉗位的大小取決于流經(jīng)二極管的電流。這由 R1 的值決定。如果 VIN 源的輸出阻抗足夠大的話,也可不需要 R1。

如果需要不依賴于電源的更為精確的過電壓鉗位,可以使用運(yùn)放來得到精密二極管。電路如圖 17-3所示。運(yùn)放補(bǔ)償了二極管的正向壓降,使得電壓正好被鉗位在運(yùn)放的同相輸入端電源電壓上。如果運(yùn)放是軌到軌的話,可以用 3.3V 供電。

由于鉗位是通過運(yùn)放來進(jìn)行的,不會影響到電源。

運(yùn)放不能改善低電壓電路中出現(xiàn)的阻抗,阻抗仍為R1 加上源電路阻抗。

技巧18

驅(qū)動雙極型晶體管

在驅(qū)動雙極型晶體管時,基極 '驅(qū)動'電流和正向電流增益 (Β/hFE)將決定晶體管將吸納多少電流。如果晶體管被單片機(jī) I/O 端口驅(qū)動,使用端口電壓和端口電流上限 (典型值 20 mA)來計算基極驅(qū)動電流。如果使用的是 3.3V 技術(shù),應(yīng)改用阻值較小的基極電流限流電阻,以確保有足夠的基極驅(qū)動電流使晶體管飽和。

RBASE的值取決于單片機(jī)電源電壓。公式18-1 說明了如何計算 RBASE。

如果將雙極型晶體管用作開關(guān),開啟或關(guān)閉由單片機(jī) I/O 端口引腳控制的負(fù)載,應(yīng)使用最小的 hFE規(guī)范和裕度,以確保器件完全飽和。

3V 技術(shù)示例:

對于這兩個示例,提高基極電流留出裕度是不錯的做法。將 1mA 的基極電流驅(qū)動至 2 mA 能確保飽和,但代價是提高了輸入功耗。

技巧19

驅(qū)動N溝道MOSFET晶體管

在選擇與 3.3V 單片機(jī)配合使用的外部 N 溝道MOSFET 時,一定要小心。MOSFET 柵極閾值電壓表明了器件完全飽和的能力。對于 3.3V 應(yīng)用,所選 MOSFET 的額定導(dǎo)通電阻應(yīng)針對 3V 或更小的柵極驅(qū)動電壓。例如,對于具有 3.3V 驅(qū)動的100 mA負(fù)載,額定漏極電流為250 μA的FET在柵極 - 源極施加 1V 電壓時,不一定能提供滿意的結(jié)果。在從 5V 轉(zhuǎn)換到 3V 技術(shù)時,應(yīng)仔細(xì)檢查柵極- 源極閾值和導(dǎo)通電阻特性參數(shù),如圖 19-1所示。稍微減少柵極驅(qū)動電壓,可以顯著減小漏電流。

對于 MOSFET,低閾值器件較為常見,其漏-源電壓額定值低于 30V。漏-源額定電壓大于 30V的 MOSFET,通常具有更高的閾值電壓 (VT)。

如表 19-1 所示,此 30V N 溝道 MOSFET 開關(guān)的閾值電壓是 0.6V。柵極施加 2.8V 的電壓時,此MOSFET 的額定電阻是 35 mΩ,因此,它非常適用于 3.3V 應(yīng)用。

對于 IRF7201 數(shù)據(jù)手冊中的規(guī)范,柵極閾值電壓最小值規(guī)定為 1.0V。這并不意味著器件可以用來在1.0V 柵 - 源電壓時開關(guān)電流,因為對于低于 4.5V 的VGS (th),沒有說明規(guī)范。對于需要低開關(guān)電阻的 3.3V 驅(qū)動的應(yīng)用,不建議使用 IRF7201,但它可以用于 5V 驅(qū)動應(yīng)用。

編輯:王磊 引用地址:http://www.eeworld.com.cn/mndz/article_2018033126951.html

本網(wǎng)站轉(zhuǎn)載的所有的文章、圖片、音頻視頻文件等資料的版權(quán)歸版權(quán)所有人所有,本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如果本網(wǎng)所選內(nèi)容的文章作者及編輯認(rèn)為其作品不宜公開自由傳播,或不應(yīng)無償使用,請及時通過電子郵件或電話通知我們,以迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。

本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
手機(jī)維修培訓(xùn)
美的空調(diào)電控中典型電路分析
采用PICl6F72單片機(jī)的電動車無刷電機(jī)控制器原理分析
模擬電路和數(shù)字電路的學(xué)習(xí)筆記(精華總結(jié)55條)
高級硬件工程師設(shè)計電路,多想了哪幾個問題?
雙向可調(diào)速的直流電機(jī)驅(qū)動電路
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服