国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
判別式模型與生成式模型

判別式模型與生成式模型的區(qū)別

http://blog.csdn.net/wolenski/article/details/7985426

產(chǎn)生式模型(Generative Model)與判別式模型(Discrimitive Model)是分類器常遇到的概念,它們的區(qū)別在于:

對(duì)于輸入x,類別標(biāo)簽y:
產(chǎn)生式模型估計(jì)它們的聯(lián)合概率分布P(x,y)
判別式模型估計(jì)條件概率分布P(y|x)

產(chǎn)生式模型可以根據(jù)貝葉斯公式得到判別式模型,但反過來不行。

Andrew Ng在NIPS2001年有一篇專門比較判別模型和產(chǎn)生式模型的文章:

On Discrimitive vs. Generative classifiers: A comparision of logistic regression and naive Bayes

(http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf)


判別式模型常見的主要有:

    Logistic Regression

    SVM

    Traditional Neural Networks

    Nearest Neighbor

    CRF

    Linear Discriminant Analysis

    Boosting

    Linear Regression


產(chǎn)生式模型常見的主要有:

                     

       Gaussians

       Naive Bayes

       Mixtures of Multinomials

       Mixtures of Gaussians

       Mixtures of Experts

       HMMs

    Sigmoidal Belief Networks, Bayesian Networks

    Markov Random Fields

    Latent Dirichlet Allocation

一個(gè)通俗易懂的解釋

  Let's say you have input data x and you want to classify the data into labels y. A generative model learns the joint probability distribution p(x,y) and a discriminative model learns the conditional probability distribution p(y|x) – which you should read as 'the probability of y given x'.

  Here's a really simple example. Suppose you have the following data in the form (x,y):

(1,0), (1,0), (2,0), (2, 1)

  p(x,y) is

 y=0 y=1
x=11/20
x=21/4  1/4
   

  p(y|x) is

 y=0 y=1
x=110
x=21/2  1/2


  If you take a few minutes to stare at those two matrices, you will understand the difference between the two probability distributions.

  The distribution p(y|x) is the natural distribution for classifying a given example x into a class y, which is why algorithms that model this directly are called discriminative algorithms. Generative algorithms model p(x,y), which can be tranformed into p(y|x) by applying Bayes rule and then used for classification. However, the distribution p(x,y) can also be used for other purposes. For example you could use p(x,y) to generate likely (x,y) pairs.

  From the description above you might be thinking that generative models are more generally useful and therefore better, but it's not as simple as that. This paper is a very popular reference on the subject of discriminative vs. generative classifiers, but it's pretty heavy going. The overall gist is that discriminative models generally outperform generative models in classification tasks.

兩個(gè)模型的對(duì)比


參考資料:

http://bbs.sciencenet.cn/blog-484653-442300.html

http://www.leexiang.com/discriminative-model-and-generative-model

http://blog.163.com/huai_jing@126/blog/static/1718619832011227757554/
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
生成模型和判定模型的內(nèi)部指南
判別式模型 vs. 生成式模型
學(xué)好這些你就牛了,常用的機(jī)器學(xué)習(xí)&數(shù)據(jù)挖掘知識(shí)點(diǎn)
計(jì)量經(jīng)濟(jì)學(xué)漢英-英漢大辭典,CH-EN Econometrics dictionary
權(quán)威機(jī)器學(xué)習(xí)術(shù)語中英對(duì)照詞表一份!
這725個(gè)機(jī)器學(xué)習(xí)術(shù)語表,太全了!
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服