為什么要有索引
索引原理
磁盤IO與預讀
索引的數(shù)據(jù)結(jié)構(gòu)
b 樹的查找過程
b 樹性質(zhì)
MySQL的索引分類
索引的兩大類型hash與btree
添加索引,必須遵循原則
慢查詢優(yōu)化的基本步驟
歡迎關(guān)注筆者,優(yōu)質(zhì)文章都在這里等你。
索引在MySQL中也叫做“鍵”,是存儲引擎用于快速找到記錄的一種數(shù)據(jù)結(jié)構(gòu)。索引對于良好的性能非常關(guān)鍵,尤其是當表中的數(shù)據(jù)量越來越大時,索引對于性能的影響愈發(fā)重要。
索引優(yōu)化應該是對查詢性能優(yōu)化最有效的手段了。索引能夠輕易將查詢性能提高好幾個數(shù)量級。索引相當于字典的音序表,如果要查某個字,如果不使用音序表,則需要從幾百頁中逐頁去查。
一般的應用系統(tǒng),讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現(xiàn)性能問題,在生產(chǎn)環(huán)境中,我們遇到最多的,也是最容易出問題的,還是一些復雜的查詢操作,因此對查詢語句的優(yōu)化顯然是重中之重。說起加速查詢,就不得不提到索引了。
索引的目的在于提高查詢效率,與我們查閱圖書所用的目錄是一個道理:先定位到章,然后定位到該章下的一個小節(jié),然后找到頁數(shù)。相似的例子還有:查字典,查火車車次,飛機航班等
本質(zhì)都是:通過不斷地縮小想要獲取數(shù)據(jù)的范圍來篩選出最終想要的結(jié)果,同時把隨機的事件變成順序的事件,也就是說,有了這種索引機制,我們可以總是用同一種查找方式來鎖定數(shù)據(jù)。
數(shù)據(jù)庫也是一樣,但顯然要復雜的多,因為不僅面臨著等值查詢,還有范圍查詢(>、<、between、in)、模糊查詢(like)、并集查詢(or)等等。數(shù)據(jù)庫應該選擇怎么樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把數(shù)據(jù)分成段,然后分段查詢呢?最簡單的如果1000條數(shù)據(jù),1到100分成第一段,101到200分成第二段,201到300分成第三段......這樣查第250條數(shù)據(jù),只要找第三段就可以了,一下子去除了90%的無效數(shù)據(jù)。
但如果是1千萬的記錄呢,分成幾段比較好?稍有算法基礎(chǔ)的同學會想到搜索樹,其平均復雜度是lgN,具有不錯的查詢性能。
但這里我們忽略了一個關(guān)鍵的問題,復雜度模型是基于每次相同的操作成本來考慮的。而數(shù)據(jù)庫實現(xiàn)比較復雜,一方面數(shù)據(jù)是保存在磁盤上的,另外一方面為了提高性能,每次又可以把部分數(shù)據(jù)讀入內(nèi)存來計算,因為我們知道訪問磁盤的成本大概是訪問內(nèi)存的十萬倍左右,所以簡單的搜索樹難以滿足復雜的應用場景。
磁盤IO的性能開銷遠大于內(nèi)存IO, 每次查找數(shù)據(jù)時把磁盤IO次數(shù)控制在一個很小的數(shù)量級,最好是常數(shù)數(shù)量級。
考慮到磁盤IO是非常高昂的操作,計算機操作系統(tǒng)做了一些優(yōu)化,當一次IO時,不光把當前磁盤地址的數(shù)據(jù),而是把相鄰的數(shù)據(jù)也都讀取到內(nèi)存緩沖區(qū)內(nèi),因為局部預讀性原理告訴我們,當計算機訪問一個地址的數(shù)據(jù)的時候,與其相鄰的數(shù)據(jù)也會很快被訪問到。
每一次IO讀取的數(shù)據(jù)我們稱之為一頁(page)。具體一頁有多大數(shù)據(jù)跟操作系統(tǒng)有關(guān),一般為4k或8k,也就是我們讀取一頁內(nèi)的數(shù)據(jù)時候,實際上才發(fā)生了一次IO,這個理論對于索引的數(shù)據(jù)結(jié)構(gòu)設(shè)計非常有幫助。
任何一種數(shù)據(jù)結(jié)構(gòu)都不是憑空產(chǎn)生的,一定會有它的背景和使用場景,我們現(xiàn)在總結(jié)一下,我們需要這種數(shù)據(jù)結(jié)構(gòu)能夠做些什么,其實很簡單,那就是:每次查找數(shù)據(jù)時把磁盤IO次數(shù)控制在一個很小的數(shù)量級,最好是常數(shù)數(shù)量級。那么我們就想到如果一個高度可控的多路搜索樹是否能滿足需求呢?就這樣,b 樹應運而生。
如上圖,是一顆b 樹,關(guān)于b 樹的定義可以參見B 樹,這里只說一些重點,淺藍色的塊我們稱之為一個磁盤塊,可以看到每個磁盤塊包含幾個數(shù)據(jù)項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數(shù)據(jù)項17和35,包含指針P1、P2、P3,P1表示小于17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大于35的磁盤塊。
真實的數(shù)據(jù)存在于葉子節(jié)點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節(jié)點只不存儲真實的數(shù)據(jù),只存儲指引搜索方向的數(shù)據(jù)項,如17、35并不真實存在于數(shù)據(jù)表中。
如圖所示,如果要查找數(shù)據(jù)項29,那么首先會把磁盤塊1由磁盤加載到內(nèi)存,此時發(fā)生一次IO,在內(nèi)存中用二分查找確定29在17和35之間,鎖定磁盤塊1的P2指針,內(nèi)存時間因為非常短(相比磁盤的IO)可以忽略不計,通過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內(nèi)存,發(fā)生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,通過指針加載磁盤塊8到內(nèi)存,發(fā)生第三次IO,同時內(nèi)存中做二分查找找到29,結(jié)束查詢,總計三次IO。
真實的情況是,3層的b 樹可以表示上百萬的數(shù)據(jù),如果上百萬的數(shù)據(jù)查找只需要三次IO,性能提高將是巨大的,如果沒有索引,每個數(shù)據(jù)項都要發(fā)生一次IO,那么總共需要百萬次的IO,顯然成本非常非常高。
1.索引字段要盡量的小:通過上面的分析,我們知道IO次數(shù)取決于b 數(shù)的高度h,假設(shè)當前數(shù)據(jù)表的數(shù)據(jù)為N,每個磁盤塊的數(shù)據(jù)項的數(shù)量是m,則有h=㏒(m 1)N,當數(shù)據(jù)量N一定的情況下,m越大,h越小;而m = 磁盤塊的大小 / 數(shù)據(jù)項的大小,磁盤塊的大小也就是一個數(shù)據(jù)頁的大小,是固定的,如果數(shù)據(jù)項占的空間越小,數(shù)據(jù)項的數(shù)量越多,樹的高度越低。
這就是為什么每個數(shù)據(jù)項,即索引字段要盡量的小,比如int占4字節(jié),要比bigint8字節(jié)少一半。這也是為什么b 樹要求把真實的數(shù)據(jù)放到葉子節(jié)點而不是內(nèi)層節(jié)點,一旦放到內(nèi)層節(jié)點,磁盤塊的數(shù)據(jù)項會大幅度下降,導致樹增高。當數(shù)據(jù)項等于1時將會退化成線性表。
2.索引的最左匹配特性(即從左往右匹配):當b 樹的數(shù)據(jù)項是復合的數(shù)據(jù)結(jié)構(gòu),比如(name,age,sex)的時候,b 數(shù)是按照從左到右的順序來建立搜索樹的,比如當(張三,20,F)這樣的數(shù)據(jù)來檢索的時候,b 樹會優(yōu)先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最后得到檢索的數(shù)據(jù);
但當(20,F)這樣的沒有name的數(shù)據(jù)來的時候,b 樹就不知道下一步該查哪個節(jié)點,因為建立搜索樹的時候name就是第一個比較因子,必須要先根據(jù)name來搜索才能知道下一步去哪里查詢。比如當(張三,F)這樣的數(shù)據(jù)來檢索時,b 樹可以用name來指定搜索方向,但下一個字段age的缺失,所以只能把名字等于張三的數(shù)據(jù)都找到,然后再匹配性別是F的數(shù)據(jù)了, 這個是非常重要的性質(zhì),即索引的最左匹配特性。
索引的功能就是加速查找。
mysql中的primary key,unique,聯(lián)合唯一也都是索引,這些索引除了加速查找以外,還有約束的功能。
普通索引index :加速查找
唯一索引
主鍵索引:primary key :加速查找 約束(不為空且唯一)
唯一索引:unique:加速查找 約束 (唯一)
聯(lián)合索引
-primary key(id,name):聯(lián)合主鍵索引
-unique(id,name):聯(lián)合唯一索引
-index(id,name):聯(lián)合普通索引
全文索引fulltext :用于搜索很長一篇文章的時候,效果最好。
空間索引spatial :了解就好,幾乎不用
我們可以在創(chuàng)建上述索引的時候,為其指定索引類型,分兩類
hash類型的索引:查詢單條快,范圍查詢慢
btree類型的索引:b 樹,層數(shù)越多,數(shù)據(jù)量指數(shù)級增長(我們就用它,因為innodb默認支持它)
不同的存儲引擎支持的索引類型也不一樣
InnoDB 支持事務(wù),支持行級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事務(wù),支持表級別鎖定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事務(wù),支持表級別鎖定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事務(wù),支持行級別鎖定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事務(wù),支持表級別鎖定,不支持 B-tree、Hash、Full-text 等索引;
1.最左前綴匹配原則,非常重要的原則,
create index ix_name_email on s1(name,email,)
- 最左前綴匹配:必須按照從左到右的順序匹配
select * from s1 where name='egon'; #可以
select * from s1 where name='egon' and email='asdf'; #可以
select * from s1 where email='alex@oldboy.com'; #不可以
mysql會一直向右匹配直到遇到范圍查詢(>、<、between、like)就停止匹配,
比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)順序的索引,
d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調(diào)整。
2.=和in可以亂序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優(yōu)化器會幫你優(yōu)化成索引可以識別的形式
3.盡量選擇區(qū)分度高的列作為索引,區(qū)分度的公式是count(distinct col)/count(*),
表示字段不重復的比例,比例越大我們掃描的記錄數(shù)越少,唯一鍵的區(qū)分度是1,而一些狀態(tài)、
性別字段可能在大數(shù)據(jù)面前區(qū)分度就是0,那可能有人會問,這個比例有什么經(jīng)驗值嗎?使用場景不同,
這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條記錄
4.索引列不能參與計算,保持列“干凈”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b 樹中存的都是數(shù)據(jù)表中的字段值,
但進行檢索時,需要把所有元素都應用函數(shù)才能比較,顯然成本太大。
所以語句應該寫成create_time = unix_timestamp(’2014-05-29’);
count(1)或count(列) 代替 count(*)
- 創(chuàng)建表時盡量時 char 代替 varchar
- 表的字段順序固定長度的字段優(yōu)先
- 組合索引代替多個單列索引(經(jīng)常使用多個條件查詢時)
- 盡量使用短索引
- 使用連接(JOIN)來代替子查詢(Sub-Queries)
- 連表時注意條件類型需一致
- 索引散列值(重復少)不適合建索引,例:性別不適合
先運行看看是否真的很慢,注意設(shè)置SQL_NO_CACHE
where條件單表查,鎖定最小返回記錄表。這句話的意思是把查詢語句的where都應用到表中返回的記錄數(shù)最小的表開始查起,單表每個字段分別查詢,看哪個字段的區(qū)分度最高
explain查看執(zhí)行計劃,是否與1預期一致(從鎖定記錄較少的表開始查詢)
order by limit 形式的sql語句讓排序的表優(yōu)先查