作為一名專業(yè)的硬件設(shè)計(jì)及測(cè)試工程師,我們每天都在使用各種不同的數(shù)字示波器進(jìn)行相關(guān)電氣信號(hào)量的量測(cè)。 與這些示波器相配的探頭種類也非常多,包括無源探頭(包括高壓探頭,傳輸線探頭)、有源探頭(包括有源單端探頭、有源差分探頭等),電流探頭、光探頭等。每種探頭各有其優(yōu)缺點(diǎn),因而各有其適用的場(chǎng)合。其中,有源探頭因具有帶寬高,輸入電容小,地環(huán)路小等優(yōu)點(diǎn)從而被廣泛使用在高速數(shù)字量測(cè)領(lǐng)域,但有源探頭的價(jià)位高,動(dòng)態(tài)范圍小,靜電敏感,校準(zhǔn)麻煩,因此,每個(gè)工程師使用示波器的入門級(jí)探頭通常是無源探頭。最常見的500Mhz的無源電壓探頭適用于一般的電路測(cè)量和快速診斷,可以滿足大多數(shù)的低速數(shù)字信號(hào)、TV、電源和其它的一些典型的示波器應(yīng)用。 本文我們將集中討論無源電壓探頭的模型和參數(shù)設(shè)定以及使用校準(zhǔn)原理。
一、10倍無源探頭的模型以及輸入負(fù)載設(shè)定
圖1. 探頭原理圖
圖1是工程師常用的10倍無源電壓探頭的原理圖,其中,Rp (9 MΩ)和Cp位于探頭尖端內(nèi),Rp為探頭輸入阻抗, Cp為探頭輸入電容, R1 (1 MΩ)表示示波器的輸入阻抗,C1表示示波器的輸入電容和同軸電纜等效電容以及探頭補(bǔ)償箱電容的組合值。為了精確地測(cè)量,兩個(gè)RC時(shí)間常量(RpCp和R1C1)必須相等;任何不平衡都會(huì)帶來測(cè)量波形的失真,從來引起使一些參數(shù)如上升時(shí)間、幅度的測(cè)量結(jié)果不準(zhǔn)確。因此,在測(cè)量前需要校準(zhǔn)示波器的探頭的工作以保證測(cè)量結(jié)果的準(zhǔn)確性。 從探頭的信號(hào)模型我們可以分析, 對(duì)于信號(hào)的DC量測(cè),輸入容性Cp和C1等效為開路。信號(hào)通過Rp和R1進(jìn)行分壓,最終示波器的輸入為:
Vout=[R1/Rp+R1]*Vin=1/10* Vin
示波器輸入信號(hào)衰減為待測(cè)輸入信號(hào)的1/10。對(duì)于較高頻率的輸入信號(hào),容抗對(duì)于信號(hào)的影響會(huì)大于阻抗。例如,一個(gè)標(biāo)準(zhǔn)的1MΩ~10pF的無源電壓探頭,輸入信號(hào)的頻率為100MHz,此時(shí),探頭輸入容抗為Xc(Cp) = 1/(2×π×f×C)=159Ω,容抗遠(yuǎn)遠(yuǎn)小于9MΩ的探頭阻抗,信號(hào)電流更多的會(huì)通過輸入電容提供的低阻回路,9MΩ阻抗的高阻回路等效為旁路。也可以理解為159 Ω和9MΩ的并聯(lián)之后等效阻抗為159 Ω。此時(shí),實(shí)際輸入到示波器的信號(hào)幅度(AC/高頻)是由探頭的輸入電容以及回路總電容的比值決定,等效為:
Vout=[Cp/Cp+C1]*Vin
一般來說,無源探頭的電纜存在8-10pF/foot的容性負(fù)載(1 foot 英尺=12 inches 英寸=0.3048 metre 米),1.5nS/foot的上升時(shí)間。 對(duì)于一個(gè)6feet的電纜就存在60pF容性,加上一般示波器的20pF的輸入電容以及一些雜散,大致為90pF左右。根據(jù)1:10的分壓,探頭的輸入電容應(yīng)該為10pF左右才能滿足 Vout/Vin=[10/10+90]=1/10 輸入衰減10倍的特性??紤]到探頭和電纜容性的一些誤差,需要使用探頭補(bǔ)償電容箱來進(jìn)行一個(gè)回路補(bǔ)償,由于誤差,無源電壓探頭的輸入容性一般為8~12pF之間。目前主流的10倍無源電壓探頭的輸入負(fù)載模型一般都是輸入電容8~12pF,輸入電阻9M歐。
二、無源電壓探頭的校準(zhǔn)
討論到這里,對(duì)于無源探頭的輸入模型大家應(yīng)該有了一定的了解,那為什么為了精確地測(cè)量,兩個(gè)RC時(shí)間常量(RpCp和R1C1)必須相等,測(cè)量前需要校準(zhǔn)呢?我們可以再進(jìn)一步簡(jiǎn)化探頭模型為一個(gè)更簡(jiǎn)單的阻容分壓電路如下:
讓我們來進(jìn)行一個(gè)簡(jiǎn)單的推導(dǎo)計(jì)算:
1.計(jì)算初始值uC2(0+)由于電容電壓發(fā)生躍變,要根據(jù)電荷守恒定律和KVL來確定
2.計(jì)算穩(wěn)態(tài)uC2(¥)電容開路時(shí),按照電阻分壓公式得到
3.計(jì)算時(shí)間常數(shù)
4.用三要素公式得到電容電壓uC2(t)
我們可以看到,波形有3種情況:
1.完全補(bǔ)償
2.過補(bǔ)償
3.欠補(bǔ)償
以下圖示給出了欠補(bǔ)償、過補(bǔ)償和合理補(bǔ)償三種情況下探頭產(chǎn)生的波形。
探頭欠補(bǔ)償波形圖
探頭過補(bǔ)償說明圖
探頭正常補(bǔ)償說明圖
所以, 在獲得一臺(tái)可以工作的示波器和探頭后應(yīng)該要做的第一項(xiàng)工作是校準(zhǔn)探頭以保證其內(nèi)部RC時(shí)間常量匹配。這時(shí)需要將探頭連接到示波器的探頭補(bǔ)償輸出。然后使用非磁性調(diào)節(jié)工具調(diào)節(jié)補(bǔ)償箱中的調(diào)節(jié)螺螺絲完成校準(zhǔn)一直觀察到平坦的波形響應(yīng)。不要太頻繁校準(zhǔn),因?yàn)闆]有必要。
a.抗干擾能力強(qiáng),因?yàn)閮筛罘肿呔€之間的耦合很好,當(dāng)外界存在噪聲干擾時(shí),幾乎是同時(shí)被耦合到兩條線上,而接收端關(guān)心的只是兩信號(hào)的差值,所以外界的共模噪聲可以被最大程度抵消。 b.能有效抑制EMI,同樣的道理,由于兩根信號(hào)的極性相反,他們對(duì)外輻射的電磁場(chǎng)可以相互抵消,耦合的越緊密,泄放到外界的電磁能量越少。 c.時(shí)序定位精確,由于差分信號(hào)的開關(guān)變化是位于兩個(gè)信號(hào)的交點(diǎn),而不像普通單端信號(hào)依靠高低兩個(gè)閾值電壓判斷,因而受工藝,溫度的影響小,能降低時(shí)序上的誤差,同時(shí)也更適合于低幅度信號(hào)的電路。目前流行的LVDS(lowvoltagedifferentialsignaling)就是指這種小振幅差分信號(hào)技術(shù)。 差分信號(hào)的結(jié)構(gòu)特點(diǎn)要求對(duì)應(yīng)的測(cè)試設(shè)備也必須是差分拓?fù)洌罘痔筋^因此成為現(xiàn)代示波器的主流配件。下圖1是典型的有源差分探頭電路結(jié)構(gòu)圖:
點(diǎn)擊此處查看全部新聞圖片
針對(duì)高頻信號(hào)測(cè)試,有源差分探頭的主要好處是低輸入電容、比單端探頭抑制共模噪聲的能力要高很多,其缺點(diǎn)主要體現(xiàn)在價(jià)格普遍較高以及需要額外的電源。比如力科公司的WaveLink系列高帶寬差分探頭即是這類探頭的代表。
2、差分探頭具有高的共模抑制比
什么是共模抑制比,簡(jiǎn)單來說,就是差動(dòng)放大電路中對(duì)信號(hào)共模成分的抑制能力,其定義為放大器對(duì)差模信號(hào)的電壓放大倍數(shù)Adm與對(duì)共模信號(hào)的電壓放大倍數(shù)Acm之比,英文全稱是CommonModeRejectionRatio,一般用簡(jiǎn)寫CMRR來表示。
點(diǎn)擊此處查看全部新聞圖片
我們可以這樣定義:兩個(gè)輸入端分別對(duì)地的電壓平均值為共模電壓Vcm,經(jīng)過差動(dòng)放大器后的增益為共模增益Acm;兩個(gè)輸入端之間的相對(duì)電壓差為差模電壓Vdm,其經(jīng)過差模放大器之后的增益為Adm。CMRR計(jì)算公式如下:
點(diǎn)擊此處查看全部新聞圖片 哪些因素會(huì)影響探頭的共模抑制比呢? 很顯然,CMRR值越大越好,一般在60dB(1000:1)左右,但隨著頻率增加CMRR會(huì)逐漸減少。因?yàn)樵娇斓男盘?hào)邊沿越容易再正負(fù)兩端產(chǎn)生偏差,因而也會(huì)帶來更多的共模電壓,如下圖所示。 點(diǎn)擊此處查看全部新聞圖片 CMRR為什么很重要,因?yàn)椴罘痔筋^的CMRR指標(biāo)若不好,則共模電壓會(huì)加入差分電壓內(nèi),造成測(cè)量上的誤差,下面為一實(shí)例: 點(diǎn)擊此處查看全部新聞圖片 單端探頭的CMRR指標(biāo)為什么很難做高?單端探頭模型表明了探頭放大器到“大地”地線之間有一個(gè)寄生電阻和寄生電感,這兩個(gè)元件構(gòu)成了由探頭電纜屏蔽層和大地地線組成的傳輸線所產(chǎn)出的特性阻抗。這一特性阻抗是很重要的,因?yàn)楫?dāng)你給單端探頭加一個(gè)共模信號(hào)時(shí),地線電感值就與這一特性阻抗一起組成了一個(gè)分壓器。此分壓器對(duì)到達(dá)放大器的地線信號(hào)起衰減作用。由于放大器的信號(hào)和地線輸入信號(hào)受到的衰減各不相同,在放大器的輸入端上就出現(xiàn)了一個(gè)凈信號(hào),從而使放大器有輸出信號(hào)。地線電感越大,共模抑制能力越低,所以當(dāng)使用單端探頭時(shí),保持地線盡量短是很重要的。 當(dāng)你給差分探頭加上一個(gè)共模信號(hào)時(shí),放大器的正負(fù)兩個(gè)輸入端都有同一個(gè)信號(hào)。所產(chǎn)生的唯一輸出信號(hào)是該放大器抑制特性的函數(shù),它與連線電感無關(guān)。因此,在存在很大的共模噪音時(shí),用差分探頭來測(cè)量更為精確。這是差分探頭與單端探頭之間很典型的區(qū)別,除非單端探頭的接地連接的電感非常小,而這一點(diǎn)在實(shí)際實(shí)踐中是很難做到的。所以實(shí)際的差分探頭CMRR一般都優(yōu)于單端探頭。 所謂“浮地”測(cè)量,即測(cè)量的兩個(gè)點(diǎn)都不處于接地電位,這是一種典型的差分測(cè)量?!靶盘?hào)公共線”與地之間的電壓可能會(huì)升高到數(shù)百伏。 通過切斷標(biāo)準(zhǔn)三頭AC插座地線的方法或使用一個(gè)交流隔離變壓器,切斷中線與地線的連接。將示波器從保護(hù)地線浮動(dòng)起來,以減小地環(huán)路的影響。這種方法其實(shí)并不可行,因?yàn)樵诮ㄖ锏牟季€中中線也許在某處已經(jīng)與地線相連,是不安全的測(cè)量方法,會(huì)帶來l人身傷害,儀器和電路損壞! 此外,它違反了工業(yè)健康和安全規(guī)定,且獲得的測(cè)量結(jié)果也差。而且,交流供電儀器在地面浮動(dòng)時(shí)會(huì)出現(xiàn)一個(gè)大的寄生電容。因此,浮動(dòng)測(cè)量將受到振蕩的破壞。 點(diǎn)擊此處查看全部新聞圖片 總而言之,將示波器“浮地”非常糟糕的注意,這將導(dǎo)致: ――損壞被測(cè)器件; ――損壞示波器 ――給人身帶來潛在傷害 ――導(dǎo)致很差的測(cè)量精度 問題該如何解決:
解決方案:
簡(jiǎn)介
測(cè)量PCIe,SATA和其它快速模擬和數(shù)字信號(hào)等寬帶信號(hào)時(shí)總是需要高阻抗探頭。通過線纜直接連接高頻信號(hào)到測(cè)量?jī)x器只是適合通常的一致性測(cè)試和PCB驗(yàn)證等應(yīng)用場(chǎng)合,但是大多數(shù)信號(hào)必須在系統(tǒng)運(yùn)行時(shí)進(jìn)行觀察以便確定整個(gè)工作系統(tǒng)中的信號(hào)特性。大多數(shù)探頭是單端,也就是測(cè)量共地信號(hào),需要通過地線連接探頭尖端附近的地和待測(cè)設(shè)備的地。這種探頭很難測(cè)量本地信號(hào)地與儀器地有很大區(qū)別的信號(hào)。地也可以與待測(cè)設(shè)備的地在一起。
設(shè)計(jì)者可以通過差分傳輸高速信號(hào)避免地連續(xù)性的問題而解決這個(gè)問題,但是這大大增加了測(cè)量挑戰(zhàn),因?yàn)橹粶y(cè)量一個(gè)信號(hào)對(duì)地不能很好地表達(dá)出這個(gè)差分信號(hào)。工程師可以使用兩個(gè)探頭測(cè)量?jī)蓚€(gè)差分信號(hào)對(duì)地的信號(hào)然后相減,但這將占用兩個(gè)通道,而且依賴于兩個(gè)探頭的精確匹配。本文將解釋這個(gè)方法將比真正的差分探頭帶來更大的負(fù)載。
所有的高阻抗差分探頭對(duì)于被測(cè)信號(hào)都表現(xiàn)出負(fù)載阻抗,使得信號(hào)產(chǎn)生失真。本文將談到為什么差分探頭比單端探頭的固有負(fù)載要小,并且描述一種比以前任何一種探頭都具有最小負(fù)載效應(yīng)的差分探頭。待測(cè)信號(hào)的探頭額定負(fù)載效應(yīng)可以量化,同時(shí)將展示探頭負(fù)載效應(yīng)的評(píng)估方法。
單端探頭的負(fù)載效應(yīng)
單端探頭有兩個(gè)輸入端——信號(hào)(尖端)和地。等效電路包括電感、DC電阻并聯(lián)的輸入電容和地夾的電感。地夾電感可以和尖端電感歸結(jié)在一起以簡(jiǎn)化電路。有源探頭的等效電路如Figure1所示。給出的電感有兩個(gè)——尖端和地夾電感。地夾電感通常占主導(dǎo)地位并依據(jù)用戶連接待測(cè)系統(tǒng)地的方式而改變。
差分探頭包括兩個(gè)獨(dú)立的輸入端子和一個(gè)差分放大器,如Figure 2所示。因?yàn)橛性措娐分环糯髢蓚€(gè)輸入,公共地連接還有相關(guān)的電感被去除。剩下的電感是兩個(gè)尖端電感的和,但是由于Ltip通常遠(yuǎn)小于Lgnd,負(fù)載電感變得很小。尖端電感也是固定的,不依賴于任何因不同用戶而改變的地夾。此外,電容減半,因?yàn)樨?fù)載電容和原有的輸入電容串聯(lián)。
此外,連接兩個(gè)高頻尖端到放大器的輸入也增加了困難。不同的待測(cè)電路要求不同的位置和引線空間,這些尖端的任何移動(dòng)可以顯著改變探頭的高頻響應(yīng)。為了抑制共模信號(hào),每個(gè)尖端的特性必須是一致的,很難創(chuàng)建可以在移動(dòng)時(shí)保持匹配的物理尖端。
新的WaveLink系列高帶寬探頭解決了這些問題。最新的SiGe工藝支持具有高頻性能的高帶寬差分放大器,D600A-AT是7.5GHz。采用了非常對(duì)稱的拓?fù)浔WC了即便是在最高頻率時(shí)尖端共模電壓能有效抑制。
和可調(diào)整的尖端相關(guān)的問題已用新的專利輸入電路解決,允許尖端和小的傳輸線一起連接到放大器。放大器和尖端構(gòu)筑在靈活的底層,尖端可被去除。用戶可以調(diào)整探頭的尖端精確匹配信號(hào)的空間從而獲得在不導(dǎo)致任何探頭負(fù)載或頻響變化的測(cè)量。
直到幾年前,儀器制造商僅提到探頭的輸入電阻和電容。這表明用戶的地夾的電感占據(jù)了主導(dǎo),通過這個(gè)連接只有很少的控制。結(jié)果是,探頭制造商忽略了所有在量化探頭時(shí)導(dǎo)致地夾效應(yīng)降低的信號(hào)。事實(shí)上,規(guī)定的低電感夾具經(jīng)常用來測(cè)量探頭性能。使用這樣的夾具,制造商展示了在任何實(shí)際測(cè)量情況中都是不可能的(到地的真實(shí)連接時(shí)必須的)頻響和帶寬性能。
查看Figure 1中的等效電路,可以看到諧振頻率(1/(2*PI*sqrt(LC))給出)點(diǎn)的探頭輸入阻抗是0歐姆——完全消除了被測(cè)信號(hào)!最近一些制造商開始注意這個(gè)問題并設(shè)計(jì)具有更好輸入特性的探頭。Figure 3展示了這種探頭(Probe A)的等效電路。這是許多給出這個(gè)探頭精確依賴于尖端和地夾的等效負(fù)載模型之一。這個(gè)探頭還有一個(gè)諧振點(diǎn)大概是2GHz,該頻點(diǎn)的阻抗被電阻限制到大約165歐姆。
決定被測(cè)信號(hào)的阻抗效應(yīng)并不簡(jiǎn)單,因?yàn)橐蕾囉诖郎y(cè)電路的阻抗。出于這個(gè)原因,阻抗 vs 頻率曲線是不夠的;精確的等效電路是首要的,因?yàn)樘囟ù郎y(cè)電路的效應(yīng)可以計(jì)算出來。
為了比較差分探頭的性能,通常在良好定義和常數(shù)電路中畫出負(fù)載效應(yīng)。比如,每個(gè)探頭在50歐姆理想環(huán)境中產(chǎn)生的插損如Figure 6所示。插損用dB表示;作為電壓表示,必須除以20,采用反對(duì)數(shù)。比如Probe B導(dǎo)致的4.6dB的插損會(huì)產(chǎn)生41%的幅度損失。這對(duì)于被探測(cè)的信號(hào)有顯著影響。
取決于探頭負(fù)載,延遲或許不是頻率常數(shù)。這意味著信號(hào)由不同的沿速率(不同頻率成份)會(huì)被延遲不同的數(shù)量。當(dāng)探頭和輸入從容性變到感性諧振時(shí),延遲也變化。甚至探頭試圖減少LC諧振的幅度影響,也會(huì)使信號(hào)的時(shí)間延遲失真。唯一真正的解決方案是移到被測(cè)頻率之上的諧振頻率。
頻域中,時(shí)間偏移表現(xiàn)為群時(shí)延。定義為相位改變除以頻率的改變。理想的傳輸線有恒定的群時(shí)延(意味著延遲獨(dú)立于頻率)。同樣,容性負(fù)載也有恒定的群時(shí)延。更復(fù)雜的負(fù)載電路表現(xiàn)出隨信號(hào)變化的頻率成份而改變的延遲。這產(chǎn)生了信號(hào)中的確定性抖動(dòng),通過替換信號(hào)的連接而簡(jiǎn)化。
示例探頭的群時(shí)延如Figure 7所示。垂直單位是ns。注意,類似于幅度損失,延遲也是被測(cè)電路阻抗的函數(shù)。此外,如果有人預(yù)計(jì)探頭在信號(hào)上產(chǎn)生的影響,特定的信號(hào)屬性將包括在仿真中。
新的WaveLinks探頭不通過同一個(gè)測(cè)試信號(hào),測(cè)量結(jié)果如Figure 10 所示。由于探頭負(fù)載(<1%)信號(hào)幅度有輕微的減少,但主要的信號(hào)邊沿完全沒有失真。探頭阻抗產(chǎn)生的延遲是2ps,不會(huì)隨著信號(hào)頻率改變。
這個(gè)同樣的夾具可以用于頻域測(cè)量。通過測(cè)試夾具的信號(hào)插損可被測(cè)量,由探頭負(fù)載增加的插損,還有群時(shí)延都可被顯示。
探頭負(fù)載阻抗可以引起被測(cè)信號(hào)幅度和時(shí)間上的顯著變化。越低的探頭負(fù)載阻抗,這些改變?cè)絽柡Γ粶y(cè)電路的特定屬性越依賴于這些改變。這些改變,尤其是時(shí)間偏斜會(huì)被顯著損害,因?yàn)橥ㄟ^功能系統(tǒng)傳播導(dǎo)致系統(tǒng)中其他點(diǎn)的失效測(cè)量。一個(gè)探頭輸入阻抗的準(zhǔn)確模型要求完全評(píng)估這些在用探頭時(shí)可以看到的效應(yīng)。
差分探頭具有固有的較低負(fù)載,現(xiàn)在的問題是增加到非常高的帶寬差分放大器(這里是7.5GHz)已被解決,這么一個(gè)探頭的所有的高頻測(cè)量是最好的。WaveLink系列探頭在這些任何已有的高頻探頭中具有最低的負(fù)載,提供了測(cè)試信號(hào)的最低失真。
聯(lián)系客服