国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
有絲分裂
科技名詞定義
中文名稱:
有絲分裂
英文名稱:
mitosis
定義1:
真核細(xì)胞的染色質(zhì)凝集成染色體、復(fù)制的姐妹染色單體在紡錘絲的牽拉下分向兩極,從而產(chǎn)生兩個(gè)染色體數(shù)和遺傳性相同的子細(xì)胞核的一種細(xì)胞分裂類型。通常劃分為前期、前中期、中期、后期和末期五個(gè)階段。
所屬學(xué)科:
細(xì)胞生物學(xué)(一級(jí)學(xué)科);細(xì)胞周期與細(xì)胞分裂(二級(jí)學(xué)科)
定義2:
真核細(xì)胞的細(xì)胞核分裂涉及DNA濃縮成可見的染色體和出現(xiàn)紡錘體的一種細(xì)胞分裂類型。
所屬學(xué)科:
遺傳學(xué)(一級(jí)學(xué)科);細(xì)胞遺傳學(xué)(二級(jí)學(xué)科)
本內(nèi)容由全國科學(xué)技術(shù)名詞審定委員會(huì)審定公布
百科名片
  
圖例
有絲分裂,又稱為間接分裂,由W. Fleming (1882)年首次發(fā)現(xiàn)于動(dòng)物及E. Strasburger(1880)年發(fā)現(xiàn)于植物。特點(diǎn)是有紡錘體染色體出現(xiàn),子染色體被平均分配到子細(xì)胞,這種分裂方式普遍見于高等動(dòng)植物(動(dòng)物和高等植物)。是真核細(xì)胞分裂產(chǎn)生體細(xì)胞的過程。
目錄
特點(diǎn)過程間期前期中期后期末期
動(dòng)植物的比較動(dòng)植物的不同動(dòng)植物的相同
意義英文版介紹(Mitosis)Phases of cell cycle and mitosis
特點(diǎn)過程間期前期中期后期末期
動(dòng)植物的比較動(dòng)植物的不同動(dòng)植物的相同
意義英文版介紹(Mitosis)Phases of cell cycle and mitosis
展開
  
編輯本段特點(diǎn)
細(xì)胞進(jìn)行有絲分裂具有周期性。即連續(xù)分裂的細(xì)胞,從一次分裂完成時(shí)開始,到下一次分裂完成時(shí)為止,為一個(gè)細(xì)胞周期。一個(gè)細(xì)胞周期包括兩個(gè)階段:分裂間期和分裂期,分裂期又分為分裂前期、分裂中期、分裂后期和分裂末期。細(xì)胞在分裂之前,必須進(jìn)行一定的物質(zhì)準(zhǔn)備。細(xì)胞增殖包括物質(zhì)準(zhǔn)備和細(xì)胞分裂整個(gè)過程。
編輯本段過程
有絲分裂是一個(gè)連續(xù)的過程,為了描述方便起見,習(xí)慣上按先后順序劃分為間期、前期、中期、后期和末期五個(gè)時(shí)期,在前期和中期之間有時(shí)還劃分出一個(gè)前中期。間期
有絲分裂間期分為G1、S、G2三個(gè)階段,其中G1期與G2期進(jìn)行RNA(即核糖核酸)的復(fù)制與有關(guān)蛋白質(zhì)的合成,S期進(jìn)行DNA的復(fù)制。其中,G1期主要是染色體蛋白質(zhì)和DNA解旋酶的合成,G2期主要是細(xì)胞分裂期有關(guān)與紡錘絲蛋白質(zhì)的合成。在有絲分裂間期,染色質(zhì)沒有高度螺旋化形成染色體,而是以染色質(zhì)的形式進(jìn)行DNA(即脫氧核糖核酸)單鏈復(fù)制。有絲分裂間期是有絲分裂全部過程重要準(zhǔn)備過程,是一個(gè)重要的基礎(chǔ)工作。前期
  
自分裂期開始到核膜解體為止的時(shí)期。間期細(xì)胞進(jìn)入有絲分裂前期時(shí),核的體積增大,由染色質(zhì)構(gòu)成的細(xì)染色線逐漸縮短變粗,形成染色體。因?yàn)槿旧w在間期中已經(jīng)復(fù)制,所以每條染色體由兩條染色單體組成。核仁在前期的后半漸漸消失。在前期末核膜破裂,于是染色體散于細(xì)胞質(zhì)中。動(dòng)物細(xì)胞有絲分裂前期時(shí)靠近核膜有兩個(gè)中心體。每個(gè)中心體由一對(duì)中心粒和圍繞它們的亮域,稱為中心質(zhì)或中心球所組成。由中心體放射出星體絲,即放射狀微管。帶有星體絲的兩個(gè)中心體逐漸分開,移向相對(duì)的兩極(圖1)。這種分開過程推測(cè)是由于兩個(gè)中心體之間的星體絲微管相互作用,更快地增長,結(jié)果把兩個(gè)中心體(兩對(duì)中心粒)推向兩極,而于核膜破裂后終于形成兩極之間的紡錘體。
前中期 自核膜破裂起到染色體排列在赤道面上為止。核膜的斷片殘留于細(xì)胞質(zhì)中,與內(nèi)質(zhì)網(wǎng)不易區(qū)別,在紡錘體的周圍有時(shí)可以看到它們。
前中期的主要過程是紡錘體的最終形成和染色體向赤道面的運(yùn)動(dòng)。紡錘體有兩種類型:一為有星紡錘體,即兩極各有一個(gè)以一對(duì)中心粒為核心的星體,見于絕大多數(shù)動(dòng)物細(xì)胞和某些低等植物細(xì)胞。一為無星紡錘體。兩極無星體,見于高等植物細(xì)胞(圖2)。  
曾經(jīng)認(rèn)為有星紡錘體含有三種紡錘絲,即三種微管。一種是星體微管,由星體散射出的微管;二是極微管,是由兩極分別向相對(duì)一級(jí)方向伸展的微管,在赤道區(qū)來自兩極的極微管互相重疊?,F(xiàn)在認(rèn)為極微管可能是由星體微管伸長形成的。三是著絲點(diǎn)微管,與著絲點(diǎn)聯(lián)結(jié)的微管,亦稱著絲點(diǎn)絲或牽引絲。著絲點(diǎn)是在染色體的著絲粒的兩側(cè)發(fā)育出的結(jié)構(gòu)。有報(bào)告說著絲點(diǎn)有使微管蛋白聚合成微管的功能。無星紡錘體只有極微管與著絲點(diǎn)微管。
核膜破裂后染色體分散于細(xì)胞質(zhì)中。每條染色體的兩條染色單體其著絲點(diǎn)分別通過著絲點(diǎn)與兩極相連。由于極微管和著絲微管之間的相互作用,染色體向赤道面運(yùn)動(dòng)。最后各種力達(dá)到平衡,染色體乃排列到赤道面上。中期
從染色體排列到赤道面上,到它們的染色單體開始分向兩極之前,這段時(shí)間稱為中期。有時(shí)把前中期也包括在中期之內(nèi)。中期染色體在赤道面形成所謂赤道板。從一端觀察可見這些染色體在赤道面呈放射狀排列,這時(shí)它們不是靜止不動(dòng)的,而是處于不斷擺動(dòng)的狀態(tài)。中期染色體濃縮變粗,顯示出該物種所特有的數(shù)目和形態(tài)。因此有絲分裂中期適于做染色體的形態(tài)、結(jié)構(gòu)和數(shù)目的研究,適于核型分析。中期時(shí)間較短。后期
每條染色體的兩條姊妹染色單體分開并移向兩極的時(shí)期。分開的染色體稱為子染色體。子染色體到達(dá)兩極時(shí)后期結(jié)束。染色單體的分開常從著絲點(diǎn)處開始,然后兩個(gè)染色單體的臂逐漸分開。當(dāng)它們完全分開后就向相對(duì)的兩極移動(dòng)。這種移動(dòng)的速度依細(xì)胞種類而異,大體上在0.2~5微米/分之間。平均速度為 1微米/分。同一細(xì)胞內(nèi)的各條染色體都差不多以同樣速度同步地移向兩極。子染色體向兩極的移動(dòng)是靠紡錘體的活動(dòng)實(shí)現(xiàn)的。末期
從子染色體到達(dá)兩極開始至形成兩個(gè)子細(xì)胞為止稱為末期。此期的主要過程是子核的形成和細(xì)胞體的分裂。子核的形成大體上是經(jīng)歷一個(gè)與前期相反的過程。到達(dá)兩極的子染色體首先解螺旋而輪廓消失,全部子染色體構(gòu)成一個(gè)大染色質(zhì)塊,在其周圍集合核膜成分,融合而形成子核的核膜,隨著子細(xì)胞核的重新組成,核內(nèi)出現(xiàn)核仁。核仁的形成與特定染色體上的核仁組織區(qū)的活動(dòng)有關(guān)。  
細(xì)胞體的分裂稱胞質(zhì)分裂。動(dòng)物和某些低等植物細(xì)胞的胞質(zhì)分裂是以縊束或起溝的方式完成的??O束的動(dòng)力一般推測(cè)是由于赤道區(qū)的細(xì)胞質(zhì)周邊的微絲收縮的結(jié)果。微絲的緊縮使細(xì)胞在此區(qū)域產(chǎn)生縊束,縊束逐漸加深使細(xì)胞體最后一分為二。
高等植物細(xì)胞的胞質(zhì)分裂是靠細(xì)胞板的形成。在末期,紡錘絲首先在靠近兩極處解體消失,但中間區(qū)的紡錘絲保留下來,并且微管增加數(shù)量,向周圍擴(kuò)展,形成桶狀結(jié)構(gòu),稱為成膜體。與形成成膜體的同時(shí),來自內(nèi)質(zhì)網(wǎng)和高爾基器的一些小泡和顆粒成分被運(yùn)輸?shù)匠嗟绤^(qū),它們經(jīng)過改組融合而參加細(xì)胞板的形成。細(xì)胞板逐漸擴(kuò)展到原來的細(xì)胞壁乃把細(xì)胞質(zhì)一分為二(圖3)。細(xì)胞質(zhì)中的有關(guān)細(xì)胞器,如線粒體,葉綠體等不是均等分配,而是隨機(jī)進(jìn)入兩個(gè)子細(xì)胞中。細(xì)胞板由兩層薄膜組成,兩層薄膜之間積累果膠質(zhì),發(fā)育成胞間層,兩側(cè)的薄膜積累纖維素,各自發(fā)育成子細(xì)胞的初生壁。
【細(xì)胞有絲分裂記憶口訣
有絲分裂并不難
間前中后末相連
間期:復(fù)制合成又生長
前期:膜仁消失現(xiàn)兩體
中期:形定數(shù)晰赤道齊
后期:點(diǎn)裂體增移兩極
末期:兩消兩現(xiàn)質(zhì)分離(動(dòng)物)
兩消兩現(xiàn)新壁建(植物)
編輯本段動(dòng)植物的比較
動(dòng)植物的不同
動(dòng)物細(xì)胞有絲分裂的過程,與植物細(xì)胞的基本相同.不同的特點(diǎn)是:
1.動(dòng)物細(xì)胞有中心體,在細(xì)胞分裂的間期,中心體的兩個(gè)中心粒各自產(chǎn)生了一個(gè)新的中心粒,因而細(xì)胞中有兩組中心粒.在細(xì)胞分裂的過程中,兩組中心粒分別移向細(xì)胞的兩極.在這兩組中心粒的周圍,發(fā)出無數(shù)條放射線,兩組中心粒之間的星射線形成了紡錘體.
2.動(dòng)物細(xì)胞分裂末期,細(xì)胞的中部并不形成細(xì)胞板,而是細(xì)胞膜從細(xì)胞的中部向內(nèi)凹陷,最后把細(xì)胞縊裂成兩部分,每部分都含有一個(gè)細(xì)胞核.這樣,一個(gè)細(xì)胞就分裂成了兩個(gè)子細(xì)胞
有絲分裂的重要意義,是將親代細(xì)胞的染色體經(jīng)過復(fù)制(實(shí)質(zhì)為DNA的復(fù)制)以后,精確地平均分配到兩個(gè)子細(xì)胞中去。由于染色體上有遺傳物質(zhì)DNA,因而在生物的親代和子代之間保持了遺傳性狀的穩(wěn)定性??梢姡?xì)胞的有絲分裂對(duì)于生物的遺傳有重要意義。動(dòng)植物的相同
動(dòng)物細(xì)胞有絲分裂的過程與植物細(xì)胞的分裂過程存在一個(gè)十分重要的相同點(diǎn):
無論是動(dòng)物細(xì)胞分裂過程還是植物細(xì)胞分裂過程都會(huì)有染色體的出現(xiàn)和紡錘體的形成。(植物:無星射線紡錘體;動(dòng)物:星射線紡錘體)。
編輯本段意義
有絲分裂的重要意義:是將親代細(xì)胞的染色體經(jīng)過復(fù)制(實(shí)質(zhì)為DNA的復(fù)制)以后,精確地平均分配到兩個(gè)子細(xì)胞中去。由于染色體上有遺傳物質(zhì)DNA,因而在生物的親代和子代之間保持了遺傳性狀的穩(wěn)定性。可見,細(xì)胞的有絲分裂對(duì)于生物的遺傳有重要意義。
編輯本段英文版介紹(Mitosis)
Mitosis is the process in which a eukaryotic cell separates the chromosomes in its cell nucleus, into two identical sets in two daughter nuclei. It is generally followed immediately by cytokinesis, which divides the nuclei, cytoplasm, organelles and cell membrane into two daughter cells containing roughly equal shares of these cellular components. Mitosis and cytokinesis together define the mitotic (M) phase of the cell cycle - the division of the mother cell into two daughter cells, genetically identical to each other and to their parent cell.  
Mitosis divides the chromosomes
Mitosis occurs exclusively in eukaryotic cells, but occurs in different ways in different species. For example, animals undergo an "open" mitosis, where the nuclear envelope breaks down before the chromosomes separate, while fungi such as Aspergillus nidulans and Saccharomyces cerevisiae (yeast) undergo a "closed" mitosis, where chromosomes divide within an intact cell nucleus. Prokaryotic cells, which lack a nucleus, divide by a process called binary fission.
The process of mitosis is complex and highly regulated. The sequence of events is divided into phases, corresponding to the completion of one set of activities and the start of the next. These stages are prophase, prometaphase, metaphase, anaphase and telophase. During the process of mitosis the pairs of chromosomes condense and attach to fibers that pull the sister chromatids to opposite sides of the cell. The cell then divides in cytokinesis, to produce two identical daughter cells.
Because cytokinesis usually occurs in conjunction with mitosis, "mitosis" is often used interchangeably with "mitotic phase". However, there are many cells where mitosis and cytokinesis occur separately, forming single cells with multiple nuclei. This occurs most notably among the fungi and slime moulds, but is found in various different groups. Even in animals, cytokinesis and mitosis may occur independently, for instance during certain stages of fruit fly embryonic development.Errors in mitosis can either kill a cell through apoptosis or cause mutations that may lead to cancer.
編輯本段Phases of cell cycle and mitosis
Interphase
The mitotic phase is a relatively short period of the cell cycle. It alternates with the much longer interphase, where the cell prepares itself for cell division. Interphase is therefore not part of mitosis. Interphase is divided into three phases, G1 (first gap), S (synthesis), and G2 (second gap). During all three phases, the cell grows by producing proteins and cytoplasmic organelles. However, chromosomes are replicated only during the S phase. Thus, a cell grows (G1), continues to grow as it duplicates its chromosomes (S), grows more and prepares for mitosis (G2), and divides (M).
Preprophase
In plant cells only, prophase is preceded by a pre-prophase stage. In highly vacuolated plant cells, the nucleus has to migrate into the center of the cell before mitosis can begin. This is achieved through the formation of a phragmosome, a transverse sheet of cytoplasm that bisects the cell along the future plane of cell division. In addition to phragmosome formation, preprophase is characterized by the formation of a ring of microtubules and actin filaments (called preprophase band) underneath the plasma membrane around the equatorial plane of the future mitotic spindle. This band marks the position where the cell will eventually divide. The cells of higher plants (such as the flowering plants) lack centrioles: with microtubules forming a spindle on the surface of the nucleus and then being organized into a spindle by the chromosomes themselves, after the nuclear membrane breaks down. The preprophase band disappears during nuclear envelope disassembly and spindle formation in prometaphase.
Prophase
  
Prophase
Normally, the genetic material in the nucleus is in a loosely bundled coil called chromatin. At the onset of prophase, chromatin condenses together into a highly ordered structure called a chromosome. Since the genetic material has already been duplicated earlier in S phase, the replicated chromosomes have two sister chromatids, bound together at the centromere by the cohesion complex. Chromosomes are visible at high magnification through a light microscope.
Close to the nucleus are structures called centrosomes, which are made of a pair of centriole. The centrosome is the coordinating center for the cell's microtubules. A cell inherits a single centrosome at cell division, which replicates before a new mitosis begins, giving a pair of centrosomes. The two centrosomes nucleate microtubules (which may be thought of as cellular ropes or poles) to form the spindle by polymerizing soluble tubulin. Molecular motor proteins then push the centrosomes along these microtubules to opposite side of the cell. Although centrosomes help organize microtubule assembly, they are not essential for the formation of the spindle, since they are absent from plants, and centrosomes are not always used in meiosis.
Metaphase  
Metaphase
As microtubules find and attach to kinetochores in prometaphase, the centromeres of the chromosomes convene along the metaphase plate or equatorial plane, an imaginary line that is equidistant from the two centrosome poles. This even alignment is due to the counterbalance of the pulling powers generated by the opposing kinetochores, analogous to a tug-of-war between people of equal strength. In certain types of cells, chromosomes do not line up at the metaphase plate and instead move back and forth between the poles randomly, only roughly lining up along the midline. Metaphase comes from the Greek μετα meaning "after."
Because proper chromosome separation requires that every kinetochore be attached to a bundle of microtubules (spindle fibres), it is thought that unattached kinetochores generate a signal to prevent premature progression to anaphase without all chromosomes being aligned. The signal creates the mitotic spindle checkpoint.
Anaphase  
Anaphase
When every kinetochore is attached to a cluster of microtubules and the chromosomes have lined up along the metaphase plate, the cell proceeds to anaphase (from the Greek ανα meaning “up,” “against,” “back,” or “re-”).
Two events then occur; First, the proteins that bind sister chromatids together are cleaved, allowing them to separate. These sister chromatids, which have now become distinct sister chromosomes, are pulled apart by shortening kinetochore microtubules and move toward the respective centrosomes to which they are attached. Next, the nonkinetochore microtubules elongate, pushing the centrosomes (and the set of chromosomes to which they are attached) apart to opposite ends of the cell. The force that causes the centrosomes to move towards the ends of the cell is still unknown, although there is a theory that suggests that the rapid assembly and breakdown of microtubules may cause this movement.
These two stages are sometimes called early and late anaphase. Early anaphase is usually defined as the separation of the sister chromatids, while late anaphase is the elongation of the microtubules and the microtubules being pulled farther apart. At the end of anaphase, the cell has succeeded in separating identical copies of the genetic material into two distinct populations.
Telophase  
Telophase
Telophase (from the Greek τελος meaning "end") is a reversal of prophase and prometaphase events. It "cleans up" the after effects of mitosis. At telophase, the nonkinetochore microtubules continue to lengthen, elongating the cell even more. Corresponding sister chromosomes attach at opposite ends of the cell. A new nuclear envelope, using fragments of the parent cell's nuclear membrane, forms around each set of separated sister chromosomes. Both sets of chromosomes, now surrounded by new nuclei, unfold back into chromatin. Mitosis is complete, but cell division is not yet complete.
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
趣味|有絲分裂也可以嘻哈起來,這節(jié)奏讓你停不下來!
【每日一圖】· 植物細(xì)胞的有絲分裂(一)
第六章 細(xì)胞的生命歷程 第一節(jié) 細(xì)胞的增殖
2014屆生物高考基礎(chǔ)復(fù)習(xí)(考綱全景透析):6.1 細(xì)胞的增殖(必修1)
深度讀:分裂間期為什么不屬于有絲分裂了?
5張圖搞定“減數(shù)分裂和有絲分裂重點(diǎn)知識(shí)列表梳理”
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服