国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費(fèi)電子書等14項(xiàng)超值服

開通VIP
CPU部分術(shù)語詳解
主頻
  在電子技術(shù)中,脈沖信號(hào)是一個(gè)按一定電壓幅度,一定時(shí)間間隔連續(xù)發(fā)出的脈沖信號(hào)。脈沖信號(hào)之間的時(shí)間間隔稱為周期;而將在單位時(shí)間(如1秒)內(nèi)所產(chǎn)生的脈沖個(gè)數(shù)稱為頻率。頻率是描述周期性循環(huán)信號(hào)(包括脈沖信號(hào))在單位時(shí)間內(nèi)所出現(xiàn)的脈沖數(shù)量多少的計(jì)量名稱;頻率的標(biāo)準(zhǔn)計(jì)量單位是Hz(赫)。電腦中的系統(tǒng)時(shí)鐘就是一個(gè)典型的頻率相當(dāng)精確和穩(wěn)定的脈沖信號(hào)發(fā)生器。頻率在數(shù)學(xué)表達(dá)式中用“f”表示,其相應(yīng)的單位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1GHz=1000MHz,1MHz=1000kHz,1kHz=1000Hz。計(jì)算脈沖信號(hào)周期的時(shí)間單位及相應(yīng)的換算關(guān)系是:s(秒)、ms(毫秒)、μs(微秒)、ns(納秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。
CPU的主頻,即CPU內(nèi)核工作的時(shí)鐘頻率(CPU Clock Speed)。通常所說的某某CPU是多少兆赫的,而這個(gè)多少兆赫就是“CPU的主頻”。很多人認(rèn)為CPU的主頻就是其運(yùn)行速度,其實(shí)不然。CPU的主頻表示在CPU內(nèi)數(shù)字脈沖信號(hào)震蕩的速度,與CPU實(shí)際的運(yùn)算能力并沒有直接關(guān)系。主頻和實(shí)際的運(yùn)算速度存在一定的關(guān)系,但目前還沒有一個(gè)確定的公式能夠定量?jī)烧叩臄?shù)值關(guān)系,因?yàn)镃PU的運(yùn)算速度還要看CPU的流水線的各方面的性能指標(biāo)(緩存、指令集,CPU的位數(shù)等等)。由于主頻并不直接代表運(yùn)算速度,所以在一定情況下,很可能會(huì)出現(xiàn)主頻較高的CPU實(shí)際運(yùn)算速度較低的現(xiàn)象。比如AMD公司的AthlonXP系列CPU大多都能以較低的主頻,達(dá)到英特爾公司的Pentium 4系列CPU較高主頻的CPU性能,所以AthlonXP系列CPU才以PR值的方式來命名。因此主頻僅是CPU性能表現(xiàn)的一個(gè)方面,而不代表CPU的整體性能。
  CPU的主頻不代表CPU的速度,但提高主頻對(duì)于提高CPU運(yùn)算速度卻是至關(guān)重要的。舉個(gè)例子來說,假設(shè)某個(gè)CPU在一個(gè)時(shí)鐘周期內(nèi)執(zhí)行一條運(yùn)算指令,那么當(dāng)CPU運(yùn)行在100MHz主頻時(shí),將比它運(yùn)行在50MHz主頻時(shí)速度快一倍。因?yàn)?00MHz的時(shí)鐘周期比50MHz的時(shí)鐘周期占用時(shí)間減少了一半,也就是工作在100MHz主頻的CPU執(zhí)行一條運(yùn)算指令所需時(shí)間僅為10ns比工作在50MHz主頻時(shí)的20ns縮短了一半,自然運(yùn)算速度也就快了一倍。只不過電腦的整體運(yùn)行速度不僅取決于CPU運(yùn)算速度,還與其它各分系統(tǒng)的運(yùn)行情況有關(guān),只有在提高主頻的同時(shí),各分系統(tǒng)運(yùn)行速度和各分系統(tǒng)之間的數(shù)據(jù)傳輸速度都能得到提高后,電腦整體的運(yùn)行速度才能真正得到提高。
  提高CPU工作主頻主要受到生產(chǎn)工藝的限制。由于CPU是在半導(dǎo)體硅片上制造的,在硅片上的元件之間需要導(dǎo)線進(jìn)行聯(lián)接,由于在高頻狀態(tài)下要求導(dǎo)線越細(xì)越短越好,這樣才能減小導(dǎo)線分布電容等雜散干擾以保證CPU運(yùn)算正確。因此制造工藝的限制,是CPU主頻發(fā)展的最大障礙之一。
適用類型
  “CPU適用類型”是指該處理器所適用的應(yīng)用類型,針對(duì)不同用戶的不同需求、不同應(yīng)用范圍,CPU被設(shè)計(jì)成各不相同的類型,即分為嵌入式和通用式、微控制式。嵌入式CPU主要用于運(yùn)行面向特定領(lǐng)域的專用程序,配備輕量級(jí)操作系統(tǒng),其應(yīng)用極其廣泛,像移動(dòng)電話、D、機(jī)頂盒等都是使用嵌入式CPU。微控制式CPU主要用于汽車空調(diào)、自動(dòng)機(jī)械等自控設(shè)備領(lǐng)域。而通用式CPU追求高性能,主要用于高性能個(gè)人計(jì)算機(jī)系統(tǒng)(即PC臺(tái)式機(jī))、服務(wù)器(工作站)以及筆記本三種。
  臺(tái)式機(jī)的CPU,就是平常大部分場(chǎng)合所提到的應(yīng)用于PC的CPU,平常所說Intel的奔騰4、賽揚(yáng)、AMD的AthlonXP等等都屬于此類CPU。
  應(yīng)用于服務(wù)器和工作站上的CPU,因其針對(duì)的應(yīng)用范圍,所以此類CPU在穩(wěn)定性、處理速度、同時(shí)處理任務(wù)的數(shù)量等方面的要求都要高于單機(jī)CPU。其中服務(wù)器(工作站)CPU的高可靠性是普通CPU所無法比擬的,因?yàn)榇蠖鄶?shù)的服務(wù)器都要滿足每天24小時(shí)、每周7天的滿負(fù)荷工作要求。由于服務(wù)器(工作站)數(shù)據(jù)處理量很大,需要采用多CPU并行處理結(jié)構(gòu),即一臺(tái)服務(wù)器中安裝2、4、8等多個(gè)CPU,需要注意的是,并行結(jié)構(gòu)需要的CPU必須為偶數(shù)個(gè)。對(duì)于服務(wù)器而言,多處理器可用于數(shù)據(jù)庫處理等高負(fù)荷高速度應(yīng)用;而對(duì)于工作站,多處理器系統(tǒng)則可以用于三維圖形制作和動(dòng)畫文件編碼等單處理器無法實(shí)現(xiàn)的高處理速度應(yīng)用。另外許多CPU的新技術(shù)都是率先開發(fā)應(yīng)用于服務(wù)器(工作站)CPU中。
  在最早期的CPU設(shè)計(jì)中并沒有單獨(dú)的筆記本CPU,均采用與臺(tái)式機(jī)的CPU,后來隨著筆記本電腦的散熱和體積成為發(fā)展的瓶頸時(shí),才逐漸生產(chǎn)出筆記本專用CPU。受筆記本內(nèi)部空間、散熱和電池容量的限制,筆記本CPU在外觀尺寸、功耗(耗電量)方面都有很高的要求。筆記本電池性能是十分重要的性能,CPU的功耗大小對(duì)電池使用時(shí)間有著最直接的影響,所以為了降低功耗筆記本處理器中都包含有一些節(jié)能技術(shù)。在無線網(wǎng)絡(luò)將要獲得更多應(yīng)用的現(xiàn)在,筆記本CPU還增加了一些定制的針對(duì)無線通信的功能。
  服務(wù)器CPU和筆記本CPU都包含有各自獨(dú)特的專有技術(shù),都是為了更好的在各自的工作條件下發(fā)揮出更好的性能。比如服務(wù)器的多CPU并行處理,以及多核多線程技術(shù);筆記本CPU的SpeedStep(可自動(dòng)調(diào)整工作頻率及電壓)節(jié)能技術(shù)。
  封裝方式三者也有不同之處,筆記本CPU是三者中最小最薄的一種,因?yàn)楣P記本處理器的體積需要更小,耐高溫的性能要更佳,因此在制造工藝上要求也就更高。
  三者在穩(wěn)定性中以服務(wù)器CPU最強(qiáng),因?yàn)槠湓O(shè)計(jì)時(shí)就要求有極低的錯(cuò)誤率,部分產(chǎn)品甚至要求全年滿負(fù)荷工作,故障時(shí)間不能超過5分鐘。
  臺(tái)式機(jī)CPU工作電壓和功耗都高于筆記本CPU,通常臺(tái)式機(jī)CPU的測(cè)試溫度上限為75攝氏度,超過75攝氏度,工作就會(huì)不穩(wěn)定,甚至出現(xiàn)問題;;而筆記本CPU的測(cè)試溫度上限為100攝氏度;服務(wù)器CPU需要長(zhǎng)時(shí)間的穩(wěn)定工作,在散熱方面的要求就更高了。
  在選購(gòu)整機(jī)尤其是有特定功能的計(jì)算機(jī)(如筆記本、服務(wù)器等)時(shí),需要注意CPU的適用類型,選用不適合的CPU類型,一方面會(huì)影響整機(jī)的系統(tǒng)性能,另一方面會(huì)加大計(jì)算機(jī)的維護(hù)成本。單獨(dú)選購(gòu)CPU時(shí)候也要注意CPU的適用類型,建議按照具體應(yīng)用的需求來購(gòu)買CPU。
系列型號(hào)
廠商會(huì)根據(jù)CPU產(chǎn)品的市場(chǎng)定位來給屬于同一系列的CPU產(chǎn)品確定一個(gè)系列型號(hào)以便于分類和管理,一般而言系列型號(hào)可以說是用于區(qū)分CPU性能的重要標(biāo)識(shí)。
早期的CPU系列型號(hào)并沒有明顯的高低端之分,例如Intel的面向主流桌面市場(chǎng)的Pentium和Pentium MMX以及面向高端服務(wù)器生產(chǎn)的Pentium Pro;AMD的面向主流桌面市場(chǎng)的K5、K6、K6-2和K6-III以及面向移動(dòng)市場(chǎng)的K6-2+和K6-III+等等。
隨著CPU技術(shù)和IT市場(chǎng)的發(fā)展,Intel和AMD兩大CPU生產(chǎn)廠商出于細(xì)分市場(chǎng)的目的,都不約而同的將自己旗下的CPU產(chǎn)品細(xì)分為高低端,從而以性能高低來細(xì)分市場(chǎng)。而高低端CPU系列型號(hào)之間的區(qū)別無非就是二級(jí)緩存容量(一般都只具有高端產(chǎn)品的四分之一)、外頻、前端總線頻率、支持的指令集以及支持的特殊技術(shù)等幾個(gè)重要方面,基本上可以認(rèn)為低端CPU產(chǎn)品就是高端CPU產(chǎn)品的縮水版。例如Intel方面的Celeron系列除了最初的產(chǎn)品沒有二級(jí)緩存之外,就始終只具有128KB的二級(jí)緩存和66MHz以及100MHz的外頻,比同時(shí)代的Pentium II/III/4系列都要差得多,而AMD方面的Duron也始終只具有64KB的二級(jí)緩存,外頻也始終要比同時(shí)代的Athlon和Athlon XP要低一個(gè)數(shù)量級(jí)。
CPU系列劃分為高低端之后,兩大CPU廠商分別都推出了自己的一系列產(chǎn)品。在桌面平臺(tái)方面,有Intel面向主流桌面市場(chǎng)的Pentium II、Pentium III和Pentium 4以及面向低端桌面市場(chǎng)的Celeron系列(包括俗稱的I/II/III/IV代);而AMD方面則有面向主流桌面市場(chǎng)Athlon、Athlon XP以及面向低端桌面市場(chǎng)的Duron和Sempron等等。在移動(dòng)平臺(tái)方面,Intel則有面向高端移動(dòng)市場(chǎng)的Mobile Pentium II、Mobile Pentium III、Mobile Pentium 4-M、Mobile Pentium 4和Pentium M以及面向低端移動(dòng)市場(chǎng)的Mobile Celeron和Celeron M;AMD方面也有面向高端移動(dòng)市場(chǎng)的Mobile Athlon 4、Mobile Athlon XP-M和Mobile Athlon 64以及面向低端移動(dòng)市場(chǎng)的Mobile Duron和Mobile Sempron等等。
目前,CPU的系列型號(hào)更是被進(jìn)一步細(xì)分為高中低三種類型。就以臺(tái)式機(jī)CPU而言,Intel方面,高端的是雙核心的Pentium EE以及單核心的Pentium 4 EE,中端的是雙核心的Pentium D和單核心的Pentium 4,低端的則是Celeron D以及已經(jīng)被淘汰掉的Celeron(即俗稱的Celeron IV);而AMD方面,高端的是Athlon 64 FX(包括單核心和雙核心),中端的則是雙核心的Athlon 64 X2和單核心的Athlon 64,低端就是Sempron。以筆記本CPU而言,Intel方面高端的是Core Duo,中端的是Core Solo和即將被淘汰的Pentium M,低端的則是Celeron M;而AMD方面,高端的則是Turion 64,中端的是Mobile Athlon 64,低端的則是Mobile Sempron。
但在購(gòu)買CPU產(chǎn)品時(shí)需要注意的是,以系列型號(hào)來區(qū)分CPU性能的高低也只對(duì)同時(shí)期的產(chǎn)品才有效,任何事物都是相對(duì)的,今天的高端就是明天的中端、后天的低端,例如昔日的高端產(chǎn)品Pentium 4和Pentium M現(xiàn)在已經(jīng)降為了中端產(chǎn)品,AMD的Turion 64在Turion 64 X2發(fā)布之后也將降為中端產(chǎn)品。另外某些系列型號(hào)的時(shí)間跨度非常大,例如Intel的Pentium 4系列從2000年11月發(fā)布至今已經(jīng)過了6個(gè)年頭,而當(dāng)時(shí)屬于高端的早期的Pentium 4其性能還遠(yuǎn)遠(yuǎn)不及現(xiàn)在屬于低端的Celeron D。而且低端CPU產(chǎn)品中也出現(xiàn)過不少以超頻性能著稱或者能修改的精品,例如Intel方面早期的Celeron 300A,中期的圖拉丁核心的Celeron III系列,以及現(xiàn)在的Celeron D系列等等;AMD方面也有早期的Duron由于可以依靠連接金橋而修改為Athlon和Athlon XP而風(fēng)靡一時(shí),中期的Barton核心Athlon XP 2500+和現(xiàn)在的64位Sempron 2500+都以超頻性能著稱。這些低端產(chǎn)品其修改后和超頻后的性能也并不比同時(shí)期主流的高端型號(hào)差,性價(jià)比非常高。

外頻
外頻是CPU乃至整個(gè)計(jì)算機(jī)系統(tǒng)的基準(zhǔn)頻率,單位是MHz(兆赫茲)。在早期的電腦中,內(nèi)存與主板之間的同步運(yùn)行的速度等于外頻,在這種方式下,可以理解為CPU外頻直接與內(nèi)存相連通,實(shí)現(xiàn)兩者間的同步運(yùn)行狀態(tài)。對(duì)于目前的計(jì)算機(jī)系統(tǒng)來說,兩者完全可以不相同,但是外頻的意義仍然存在,計(jì)算機(jī)系統(tǒng)中大多數(shù)的頻率都是在外頻的基礎(chǔ)上,乘以一定的倍數(shù)來實(shí)現(xiàn),這個(gè)倍數(shù)可以是大于1的,也可以是小于1的。
說到處理器外頻,就要提到與之密切相關(guān)的兩個(gè)概念:倍頻與主頻,主頻就是CPU的時(shí)鐘頻率;倍頻即主頻與外頻之比的倍數(shù)。主頻、外頻、倍頻,其關(guān)系式:主頻=外頻×倍頻。
在486之前,CPU的主頻還處于一個(gè)較低的階段,CPU的主頻一般都等于外頻。而在486出現(xiàn)以后,由于CPU工作頻率不斷提高,而PC機(jī)的一些其他設(shè)備(如插卡、硬盤等)卻受到工藝的限制,不能承受更高的頻率,因此限制了CPU頻率的進(jìn)一步提高。因此出現(xiàn)了倍頻技術(shù),該技術(shù)能夠使CPU內(nèi)部工作頻率變?yōu)橥獠款l率的倍數(shù),從而通過提升倍頻而達(dá)到提升主頻的目的。倍頻技術(shù)就是使外部設(shè)備可以工作在一個(gè)較低外頻上,而CPU主頻是外頻的倍數(shù)。
在Pentium時(shí)代,CPU的外頻一般是60/66MHz,從Pentium Ⅱ 350開始,CPU外頻提高到100MHz,目前CPU外頻已經(jīng)達(dá)到了200MHz。由于正常情況下外頻和內(nèi)存總線頻率相同,所以當(dāng)CPU外頻提高后,與內(nèi)存之間的交換速度也相應(yīng)得到了提高,對(duì)提高電腦整體運(yùn)行速度影響較大。
外頻與前端總線(FSB)頻率很容易被混為一談。前端總線的速度指的是CPU和北橋芯片間總線的速度,更實(shí)質(zhì)性的表示了CPU和外界數(shù)據(jù)傳輸?shù)乃俣?。而外頻的概念是建立在數(shù)字脈沖信號(hào)震蕩速度基礎(chǔ)之上的,也就是說,100MHz外頻特指數(shù)字脈沖信號(hào)在每秒鐘震蕩一萬萬次,它更多的影響了PCI及其他總線的頻率。之所以前端總線與外頻這兩個(gè)概念容易混淆,主要的原因是在以前的很長(zhǎng)一段時(shí)間里(主要是在Pentium 4出現(xiàn)之前和剛出現(xiàn)Pentium 4時(shí)),前端總線頻率與外頻是相同的,因此往往直接稱前端總線為外頻,最終造成這樣的誤會(huì)。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人們發(fā)現(xiàn)前端總線頻率需要高于外頻,因此采用了QDR(Quad Date Rate)技術(shù),或者其他類似的技術(shù)實(shí)現(xiàn)這個(gè)目的。這些技術(shù)的原理類似于AGP的2X或者4X,它們使得前端總線的頻率成為外頻的2倍、4倍甚至更高,從此之后前端總線和外頻的區(qū)別才開始被人們重視起來。
一個(gè)CPU默認(rèn)的外頻只有一個(gè),主板必須能支持這個(gè)外頻。因此在選購(gòu)主板和CPU時(shí)必須注意這點(diǎn),如果兩者不匹配,系統(tǒng)就無法工作。此外,現(xiàn)在CPU的倍頻很多已經(jīng)被鎖定,所以超頻時(shí)經(jīng)常需要超外頻。外頻改變后系統(tǒng)很多其他頻率也會(huì)改變,除了CPU主頻外,前端總線頻率、PCI等各種接口頻率,包括硬盤接口的頻率都會(huì)改變,都可能造成系統(tǒng)無法正常運(yùn)行。當(dāng)然有些主板可以提供鎖定各種接口頻率的功能,對(duì)成功超頻有很大幫助。超頻有風(fēng)險(xiǎn),甚至?xí)p壞計(jì)算機(jī)硬件。

倍頻
CPU的的倍頻,全稱是倍頻系數(shù)。CPU的核心工作頻率與外頻之間存在著一個(gè)比值關(guān)系,這個(gè)比值就是倍頻系數(shù),簡(jiǎn)稱倍頻。理論上倍頻是從1.5一直到無限的,但需要注意的是,倍頻是以0.5為一個(gè)間隔單位。外頻與倍頻相乘就是主頻,所以其中任何一項(xiàng)提高都可以使CPU的主頻上升。
  原先并沒有倍頻概念,CPU的主頻和系統(tǒng)總線的速度是一樣的,但CPU的速度越來越快,倍頻技術(shù)也就應(yīng)允而生。它可使系統(tǒng)總線工作在相對(duì)較低的頻率上,而CPU速度可以通過倍頻來無限提升。那么CPU主頻的計(jì)算方式變?yōu)椋褐黝l = 外頻 x 倍頻。也就是倍頻是指CPU和系統(tǒng)總線之間相差的倍數(shù),當(dāng)外頻不變時(shí),提高倍頻,CPU主頻也就越高。
一個(gè)CPU默認(rèn)的倍頻只有一個(gè),主板必須能支持這個(gè)倍頻。因此在選購(gòu)主板和CPU時(shí)必須注意這點(diǎn),如果兩者不匹配,系統(tǒng)就無法工作。此外,現(xiàn)在CPU的倍頻很多已經(jīng)被鎖定,無法修改。
一級(jí)緩存
CPU緩存(Cache Memory)是位于CPU與內(nèi)存之間的臨時(shí)存儲(chǔ)器,它的容量比內(nèi)存小的多但是交換速度卻比內(nèi)存要快得多。緩存的出現(xiàn)主要是為了解決CPU運(yùn)算速度與內(nèi)存讀寫速度不匹配的矛盾,因?yàn)镃PU運(yùn)算速度要比內(nèi)存讀寫速度快很多,這樣會(huì)使CPU花費(fèi)很長(zhǎng)時(shí)間等待數(shù)據(jù)到來或把數(shù)據(jù)寫入內(nèi)存。在緩存中的數(shù)據(jù)是內(nèi)存中的一小部分,但這一小部分是短時(shí)間內(nèi)CPU即將訪問的,當(dāng)CPU調(diào)用大量數(shù)據(jù)時(shí),就可避開內(nèi)存直接從緩存中調(diào)用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個(gè)內(nèi)存儲(chǔ)器(緩存+內(nèi)存)就變成了既有緩存的高速度,又有內(nèi)存的大容量的存儲(chǔ)系統(tǒng)了。緩存對(duì)CPU的性能影響很大,主要是因?yàn)镃PU的數(shù)據(jù)交換順序和CPU與緩存間的帶寬引起的。
緩存的工作原理是當(dāng)CPU要讀取一個(gè)數(shù)據(jù)時(shí),首先從緩存中查找,如果找到就立即讀取并送給CPU處理;如果沒有找到,就用相對(duì)慢的速度從內(nèi)存中讀取并送給CPU處理,同時(shí)把這個(gè)數(shù)據(jù)所在的數(shù)據(jù)塊調(diào)入緩存中,可以使得以后對(duì)整塊數(shù)據(jù)的讀取都從緩存中進(jìn)行,不必再調(diào)用內(nèi)存。
正是這樣的讀取機(jī)制使CPU讀取緩存的命中率非常高(大多數(shù)CPU可達(dá)90%左右),也就是說CPU下一次要讀取的數(shù)據(jù)90%都在緩存中,只有大約10%需要從內(nèi)存讀取。這大大節(jié)省了CPU直接讀取內(nèi)存的時(shí)間,也使CPU讀取數(shù)據(jù)時(shí)基本無需等待??偟膩碚f,CPU讀取數(shù)據(jù)的順序是先緩存后內(nèi)存。
目前緩存基本上都是采用SRAM存儲(chǔ)器,SRAM是英文Static RAM的縮寫,它是一種具有靜志存取功能的存儲(chǔ)器,不需要刷新電路即能保存它內(nèi)部存儲(chǔ)的數(shù)據(jù)。不像DRAM內(nèi)存那樣需要刷新電路,每隔一段時(shí)間,固定要對(duì)DRAM刷新充電一次,否則內(nèi)部的數(shù)據(jù)即會(huì)消失,因此SRAM具有較高的性能,但是SRAM也有它的缺點(diǎn),即它的集成度較低,相同容量的DRAM內(nèi)存可以設(shè)計(jì)為較小的體積,但是SRAM卻需要很大的體積,這也是目前不能將緩存容量做得太大的重要原因。它的特點(diǎn)歸納如下:優(yōu)點(diǎn)是節(jié)能、速度快、不必配合內(nèi)存刷新電路、可提高整體的工作效率,缺點(diǎn)是集成度低、相同的容量體積較大、而且價(jià)格較高,只能少量用于關(guān)鍵性系統(tǒng)以提高效率。
按照數(shù)據(jù)讀取順序和與CPU結(jié)合的緊密程度,CPU緩存可以分為一級(jí)緩存,二級(jí)緩存,部分高端CPU還具有三級(jí)緩存,每一級(jí)緩存中所儲(chǔ)存的全部數(shù)據(jù)都是下一級(jí)緩存的一部分,這三種緩存的技術(shù)難度和制造成本是相對(duì)遞減的,所以其容量也是相對(duì)遞增的。當(dāng)CPU要讀取一個(gè)數(shù)據(jù)時(shí),首先從一級(jí)緩存中查找,如果沒有找到再?gòu)亩?jí)緩存中查找,如果還是沒有就從三級(jí)緩存或內(nèi)存中查找。一般來說,每級(jí)緩存的命中率大概都在80%左右,也就是說全部數(shù)據(jù)量的80%都可以在一級(jí)緩存中找到,只剩下20%的總數(shù)據(jù)量才需要從二級(jí)緩存、三級(jí)緩存或內(nèi)存中讀取,由此可見一級(jí)緩存是整個(gè)CPU緩存架構(gòu)中最為重要的部分。
一級(jí)緩存(Level 1 Cache)簡(jiǎn)稱L1 Cache,位于CPU內(nèi)核的旁邊,是與CPU結(jié)合最為緊密的CPU緩存,也是歷史上最早出現(xiàn)的CPU緩存。由于一級(jí)緩存的技術(shù)難度和制造成本最高,提高容量所帶來的技術(shù)難度增加和成本增加非常大,所帶來的性能提升卻不明顯,性價(jià)比很低,而且現(xiàn)有的一級(jí)緩存的命中率已經(jīng)很高,所以一級(jí)緩存是所有緩存中容量最小的,比二級(jí)緩存要小得多。
一般來說,一級(jí)緩存可以分為一級(jí)數(shù)據(jù)緩存(Data Cache,D-Cache)和一級(jí)指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數(shù)據(jù)以及對(duì)執(zhí)行這些數(shù)據(jù)的指令進(jìn)行即時(shí)解碼,而且兩者可以同時(shí)被CPU訪問,減少了爭(zhēng)用Cache所造成的沖突,提高了處理器效能。目前大多數(shù)CPU的一級(jí)數(shù)據(jù)緩存和一級(jí)指令緩存具有相同的容量,例如AMD的Athlon XP就具有64KB的一級(jí)數(shù)據(jù)緩存和64KB的一級(jí)指令緩存,其一級(jí)緩存就以64KB+64KB來表示,其余的CPU的一級(jí)緩存表示方法以此類推。
Intel的采用NetBurst架構(gòu)的CPU(最典型的就是Pentium 4)的一級(jí)緩存有點(diǎn)特殊,使用了新增加的一種一級(jí)追蹤緩存(Execution Trace Cache,T-Cache或ETC)來替代一級(jí)指令緩存,容量為12KμOps,表示能存儲(chǔ)12K條即12000條解碼后的微指令。一級(jí)追蹤緩存與一級(jí)指令緩存的運(yùn)行機(jī)制是不相同的,一級(jí)指令緩存只是對(duì)指令作即時(shí)的解碼而并不會(huì)儲(chǔ)存這些指令,而一級(jí)追蹤緩存同樣會(huì)將一些指令作解碼,這些指令稱為微指令(micro-ops),而這些微指令能儲(chǔ)存在一級(jí)追蹤緩存之內(nèi),無需每一次都作出解碼的程序,因此一級(jí)追蹤緩存能有效地增加在高工作頻率下對(duì)指令的解碼能力,而μOps就是micro-ops,也就是微型操作的意思。它以很高的速度將μops提供給處理器核心。Intel NetBurst微型架構(gòu)使用執(zhí)行跟蹤緩存,將解碼器從執(zhí)行循環(huán)中分離出來。這個(gè)跟蹤緩存以很高的帶寬將uops提供給核心,從本質(zhì)上適于充分利用軟件中的指令級(jí)并行機(jī)制。Intel并沒有公布一級(jí)追蹤緩存的實(shí)際容量,只知道一級(jí)追蹤緩存能儲(chǔ)存12000條微指令(micro-ops)。所以,我們不能簡(jiǎn)單地用微指令的數(shù)目來比較指令緩存的大小。實(shí)際上,單核心的NetBurst架構(gòu)CPU使用8Kμops的緩存已經(jīng)基本上夠用了,多出的4kμops可以大大提高緩存命中率。而如果要使用超線程技術(shù)的話,12KμOps就會(huì)有些不夠用,這就是為什么有時(shí)候Intel處理器在使用超線程技術(shù)時(shí)會(huì)導(dǎo)致性能下降的重要原因。
例如Northwood核心的一級(jí)緩存為8KB+12KμOps,就表示其一級(jí)數(shù)據(jù)緩存為8KB,一級(jí)追蹤緩存為12KμOps;而Prescott核心的一級(jí)緩存為16KB+12KμOps,就表示其一級(jí)數(shù)據(jù)緩存為16KB,一級(jí)追蹤緩存為12KμOps。在這里12KμOps絕對(duì)不等于12KB,單位都不同,一個(gè)是μOps,一個(gè)是Byte(字節(jié)),而且二者的運(yùn)行機(jī)制完全不同。所以那些把Intel的CPU一級(jí)緩存簡(jiǎn)單相加,例如把Northwood核心說成是20KB一級(jí)緩存,把Prescott核心說成是28KB一級(jí)緩存,并且據(jù)此認(rèn)為Intel處理器的一級(jí)緩存容量遠(yuǎn)遠(yuǎn)低于AMD處理器128KB的一級(jí)緩存容量的看法是完全錯(cuò)誤的,二者不具有可比性。在架構(gòu)有一定區(qū)別的CPU對(duì)比中,很多緩存已經(jīng)難以找到對(duì)應(yīng)的東西,即使類似名稱的緩存在設(shè)計(jì)思路和功能定義上也有區(qū)別了,此時(shí)不能用簡(jiǎn)單的算術(shù)加法來進(jìn)行對(duì)比;而在架構(gòu)極為近似的CPU對(duì)比中,分別對(duì)比各種功能緩存大小才有一定的意義。

二級(jí)緩存容量
  CPU緩存(Cache Memory)是位于CPU與內(nèi)存之間的臨時(shí)存儲(chǔ)器,它的容量比內(nèi)存小但交換速度快。在緩存中的數(shù)據(jù)是內(nèi)存中的一小部分,但這一小部分是短時(shí)間內(nèi)CPU即將訪問的,當(dāng)CPU調(diào)用大量數(shù)據(jù)時(shí),就可避開內(nèi)存直接從緩存中調(diào)用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個(gè)內(nèi)存儲(chǔ)器(緩存+內(nèi)存)就變成了既有緩存的高速度,又有內(nèi)存的大容量的存儲(chǔ)系統(tǒng)了。緩存對(duì)CPU的性能影響很大,主要是因?yàn)镃PU的數(shù)據(jù)交換順序和CPU與緩存間的帶寬引起的。 
  緩存的工作原理是當(dāng)CPU要讀取一個(gè)數(shù)據(jù)時(shí),首先從緩存中查找,如果找到就立即讀取并送給CPU處理;如果沒有找到,就用相對(duì)慢的速度從內(nèi)存中讀取并送給CPU處理,同時(shí)把這個(gè)數(shù)據(jù)所在的數(shù)據(jù)塊調(diào)入緩存中,可以使得以后對(duì)整塊數(shù)據(jù)的讀取都從緩存中進(jìn)行,不必再調(diào)用內(nèi)存。
  正是這樣的讀取機(jī)制使CPU讀取緩存的命中率非常高(大多數(shù)CPU可達(dá)90%左右),也就是說CPU下一次要讀取的數(shù)據(jù)90%都在緩存中,只有大約10%需要從內(nèi)存讀取。這大大節(jié)省了CPU直接讀取內(nèi)存的時(shí)間,也使CPU讀取數(shù)據(jù)時(shí)基本無需等待。總的來說,CPU讀取數(shù)據(jù)的順序是先緩存后內(nèi)存。
  最早先的CPU緩存是個(gè)整體的,而且容量很低,英特爾公司從Pentium時(shí)代開始把緩存進(jìn)行了分類。當(dāng)時(shí)集成在CPU內(nèi)核中的緩存已不足以滿足CPU的需求,而制造工藝上的限制又不能大幅度提高緩存的容量。因此出現(xiàn)了集成在與CPU同一塊電路板上或主板上的緩存,此時(shí)就把 CPU內(nèi)核集成的緩存稱為一級(jí)緩存,而外部的稱為二級(jí)緩存。一級(jí)緩存中還分?jǐn)?shù)據(jù)緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數(shù)據(jù)和執(zhí)行這些數(shù)據(jù)的指令,而且兩者可以同時(shí)被CPU訪問,減少了爭(zhēng)用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時(shí),用新增的一種一級(jí)追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲(chǔ)12K條微指令。
  隨著CPU制造工藝的發(fā)展,二級(jí)緩存也能輕易的集成在CPU內(nèi)核中,容量也在逐年提升。現(xiàn)在再用集成在CPU內(nèi)部與否來定義一、二級(jí)緩存,已不確切。而且隨著二級(jí)緩存被集成入CPU內(nèi)核中,以往二級(jí)緩存與CPU大差距分頻的情況也被改變,此時(shí)其以相同于主頻的速度工作,可以為CPU提供更高的傳輸速度。
  二級(jí)緩存是CPU性能表現(xiàn)的關(guān)鍵之一,在CPU核心不變化的情況下,增加二級(jí)緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級(jí)緩存上有差異,由此可見二級(jí)緩存對(duì)于CPU的重要性。
  CPU在緩存中找到有用的數(shù)據(jù)被稱為命中,當(dāng)緩存中沒有CPU所需的數(shù)據(jù)時(shí)(這時(shí)稱為未命中),CPU才訪問內(nèi)存。從理論上講,在一顆擁有二級(jí)緩存的CPU中,讀取一級(jí)緩存的命中率為80%。也就是說CPU一級(jí)緩存中找到的有用數(shù)據(jù)占數(shù)據(jù)總量的80%,剩下的20%從二級(jí)緩存中讀取。由于不能準(zhǔn)確預(yù)測(cè)將要執(zhí)行的數(shù)據(jù),讀取二級(jí)緩存的命中率也在80%左右(從二級(jí)緩存讀到有用的數(shù)據(jù)占總數(shù)據(jù)的16%)。那么還有的數(shù)據(jù)就不得不從內(nèi)存調(diào)用,但這已經(jīng)是一個(gè)相當(dāng)小的比例了。目前的較高端的CPU中,還會(huì)帶有三級(jí)緩存,它是為讀取二級(jí)緩存后未命中的數(shù)據(jù)設(shè)計(jì)的—種緩存,在擁有三級(jí)緩存的CPU中,只有約5%的數(shù)據(jù)需要從內(nèi)存中調(diào)用,這進(jìn)一步提高了CPU的效率。
  為了保證CPU訪問時(shí)有較高的命中率,緩存中的內(nèi)容應(yīng)該按一定的算法替換。一種較常用的算法是“最近最少使用算法”(LRU算法),它是將最近一段時(shí)間內(nèi)最少被訪問過的行淘汰出局。因此需要為每行設(shè)置一個(gè)計(jì)數(shù)器,LRU算法是把命中行的計(jì)數(shù)器清零,其他各行計(jì)數(shù)器加1。當(dāng)需要替換時(shí)淘汰行計(jì)數(shù)器計(jì)數(shù)值最大的數(shù)據(jù)行出局。這是一種高效、科學(xué)的算法,其計(jì)數(shù)器清零過程可以把一些頻繁調(diào)用后再不需要的數(shù)據(jù)淘汰出緩存,提高緩存的利用率。
  CPU產(chǎn)品中,一級(jí)緩存的容量基本在4KB到64KB之間,二級(jí)緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級(jí)緩存容量各產(chǎn)品之間相差不大,而二級(jí)緩存容量則是提高CPU性能的關(guān)鍵。二級(jí)緩存容量的提升是由CPU制造工藝所決定的,容量增大必然導(dǎo)致CPU內(nèi)部晶體管數(shù)的增加,要在有限的CPU面積上集成更大的緩存,對(duì)制造工藝的要求也就越高。
雙核心CPU的二級(jí)緩存比較特殊,和以前的單核心CPU相比,最重要的就是兩個(gè)內(nèi)核的緩存所保存的數(shù)據(jù)要保持一致,否則就會(huì)出現(xiàn)錯(cuò)誤,為了解決這個(gè)問題不同的CPU使用了不同的辦法:
Intel雙核心處理器的二級(jí)緩存
目前Intel的雙核心CPU主要有Pentium D、Pentium EE、Core Duo三種,其中Pentium D、Pentium EE的二級(jí)緩存方式完全相同。Pentium D和Pentium EE的二級(jí)緩存都是CPU內(nèi)部?jī)蓚€(gè)內(nèi)核具有互相獨(dú)立的二級(jí)緩存,其中,8xx系列的Smithfield核心CPU為每核心1MB,而9xx系列的Presler核心CPU為每核心2MB。這種CPU內(nèi)部的兩個(gè)內(nèi)核之間的緩存數(shù)據(jù)同步是依靠位于主板北橋芯片上的仲裁單元通過前端總線在兩個(gè)核心之間傳輸來實(shí)現(xiàn)的,所以其數(shù)據(jù)延遲問題比較嚴(yán)重,性能并不盡如人意。
Core Duo使用的核心為Yonah,它的二級(jí)緩存則是兩個(gè)核心共享2MB的二級(jí)緩存,共享式的二級(jí)緩存配合Intel的“Smart cache”共享緩存技術(shù),實(shí)現(xiàn)了真正意義上的緩存數(shù)據(jù)同步,大幅度降低了數(shù)據(jù)延遲,減少了對(duì)前端總線的占用,性能表現(xiàn)不錯(cuò),是目前雙核心處理器上最先進(jìn)的二級(jí)緩存架構(gòu)。今后Intel的雙核心處理器的二級(jí)緩存都會(huì)采用這種兩個(gè)內(nèi)核共享二級(jí)緩存的“Smart cache”共享緩存技術(shù)。
AMD雙核心處理器的二級(jí)緩存
Athlon 64 X2 CPU的核心主要有Manchester和Toledo兩種,他們的二級(jí)緩存都是CPU內(nèi)部?jī)蓚€(gè)內(nèi)核具有互相獨(dú)立的二級(jí)緩存,其中,Manchester核心為每核心512KB,而Toledo核心為每核心1MB。處理器內(nèi)部的兩個(gè)內(nèi)核之間的緩存數(shù)據(jù)同步是依靠CPU內(nèi)置的System Request Interface(系統(tǒng)請(qǐng)求接口,SRI)控制,傳輸在CPU內(nèi)部即可實(shí)現(xiàn)。這樣一來,不但CPU資源占用很小,而且不必占用內(nèi)存總線資源,數(shù)據(jù)延遲也比Intel的Smithfield核心和Presler核心大為減少,協(xié)作效率明顯勝過這兩種核心。不過,由于這種方式仍然是兩個(gè)內(nèi)核的緩存相互獨(dú)立,從架構(gòu)上來看也明顯不如以Yonah核心為代表的Intel的共享緩存技術(shù)Smart Cache。
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
電腦配置的性能參數(shù)都是什么意思?_電腦硬件_電腦配件_天涯問答
電腦硬件入門知識(shí)全解(CPU篇) - 硬件DIY -
劉堅(jiān)強(qiáng)辦公學(xué)《自學(xué)電腦組裝》2-1 CPU的性能指標(biāo)
電腦硬件參數(shù)之CPU
輝煌時(shí)代------科技巨頭英特爾進(jìn)化史!
選購(gòu)CPU時(shí)需要注意什么參數(shù)?.
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服