近年來,抗衰老行業(yè)得以飛速發(fā)展,離不開領(lǐng)域內(nèi)多位學(xué)界大佬的硬核加持,就職于哈佛大學(xué)醫(yī)學(xué)院的大衛(wèi)·辛克萊(David A. Sinclair)教授便是個中翹楚,2014年,他還被美國《時代周刊》雜志評選為“全球最具影響力百大人物”。
作為業(yè)界標(biāo)桿人物,辛克萊教授的抗衰心得一直為大眾津津樂道。從轉(zhuǎn)發(fā)最新研究動態(tài),到日常生活分享,他在Twitter上人氣可不低,算得上是位“流量博主”。早在2019年,他曾發(fā)布一條動態(tài),勸告讀者們“深思熟慮BCAA的攝入”。
這個本質(zhì)上不過是類氨基酸的物質(zhì),怎得還能抗衰不成反折壽?考慮到BCAA對于不少讀者也不是個新鮮事物,不少人說不定曾經(jīng)或正在嘗試。這期我們就一起來聊聊——“BCAA究竟是好是壞?”“我是否需要BCAA?”又或者“我應(yīng)該如何正確服用BCAA?”
BCAA體內(nèi)代謝:不走尋常路
BCAA是亮氨酸、異亮氨酸和纈氨酸三種必需氨基酸的統(tǒng)稱。它們無法由機體自主合成,需從外界直接攝取,大多數(shù)高蛋白食物,如肉類、乳制品、豆類等,均含有豐富的BCAA。
無論從飲食中直接獲取,還是短期饑餓后肌肉蛋白質(zhì)水解,BCAA在體內(nèi)的代謝過程大致分為以下兩步[1]。
起點:骨骼肌
與大多數(shù)氨基酸不同,由于BCAA分解代謝途徑中的第一種酶BCAT(支鏈氨基酸氨基轉(zhuǎn)移酶)的肝臟活性較低。因此,BCAA不走“尋常路”(從肝臟開始),轉(zhuǎn)向骨骼肌作為自己的首發(fā)站。
在骨骼肌中,BCAA經(jīng)過BCAT催化,轉(zhuǎn)化為BCKAs(支鏈酮酸,包括KMV、KIV等),并產(chǎn)生谷氨酰胺和丙氨酸,共同進入血液。
下一站:多組織線粒體
進入血液循環(huán)后,BCKAs會到達肝臟、腎臟和脂肪等多個組織,在線粒體內(nèi)膜上BCKDH(支鏈α-酮酸脫氫酶復(fù)合物)的作用下氧化脫羧,生成相應(yīng)的支鏈酰基輔酶A酯類。這些底物可以進入三羧酸循環(huán),或以糖原或甘油三酯的形式儲存[2]。
圖注:BCAA分解代謝的主要途徑
值得一提是,BCKDH作為BCAA分解代謝途徑的限速酶[3],在肝臟中的活性最高,并受到多種因素調(diào)控,如BCAA的含量與磷酸化水平[4]以及多種代謝因子(如IGF-1、TNFα、皮質(zhì)醇)[1]等。
BCAA與機體代謝:時而有雨時而晴
僅從BCAA的代謝過程,就可以初步斷言其對維持機體能量穩(wěn)態(tài)的重要作用,或許這正是它在補劑市場上受到追捧的原因之一。
當(dāng)前,不少研究已經(jīng)發(fā)現(xiàn),BCAA與生物體蛋白質(zhì)合成、乳腺健康、胚胎發(fā)育、腸道及免疫功能均有顯著關(guān)聯(lián)[5]。尤其對于葡萄糖和脂質(zhì)代謝,更是“掌控力”滿滿。
BCAA與葡萄糖代謝:愛恨交織的長詩
維持機體正常血糖水平,對保證能量穩(wěn)態(tài)意義深遠(yuǎn)。BCAA對葡萄糖轉(zhuǎn)運過程的調(diào)控已經(jīng)得到證實[6],例如亮氨酸能通過上調(diào)胰島素水平,增強GLUT4和GLUT1(葡萄糖轉(zhuǎn)運蛋白)易位[7],并激活PI3K和PKC信號通路[8],增加骨骼肌中葡萄糖的攝取。
然而,“福兮禍所伏”,BCAA的血糖調(diào)節(jié)作用也不是一路長紅。若過量攝入BCAA,會持續(xù)激活mTORC1,使胰島素受體與信號介質(zhì)IRS-1分離,誘導(dǎo)胰島素抵抗[9],使得葡萄糖代謝受損[10]。
但BCAA與胰島素間的邏輯關(guān)系又似乎不那么簡單。另一種觀點認(rèn)為,BCAA可能是胰島素抵抗的標(biāo)志,而不是原因,因為胰島素抵抗會抑制BCKDH活性[11],導(dǎo)致BCAA代謝異常積累,引發(fā)一系列線粒體功能障礙和應(yīng)激信號[9]。
BCAA與脂質(zhì)代謝:背后一刀的盟友
“高蛋白低碳水”、“一天十幾個雞蛋白”,諸如此類的減重方法,可能不少讀者在控制體重時都曾嘗試。但不加限制狂吃蛋白質(zhì),對我們的脂肪代謝可能并不友好。
雖說,適當(dāng)補充BCAA能增加細(xì)胞中乙酰輔酶A的水平,并抑制丙酮酸脫氫酶活性,將能源偏好由碳水化合物轉(zhuǎn)移到脂質(zhì),幫助控制肥胖[12]。
但在一項小鼠試驗中卻發(fā)現(xiàn),長期補充BCAA不僅讓它們吃得更多、長得更胖,還縮短了這些小鼠10%的壽命,而限制BCAA攝入后,其健康狀況得到扭轉(zhuǎn)[13]。同時,2016年一項針對2000余名我國漢族人群的大規(guī)模研究也表明,體內(nèi)BCAA水平與血脂代謝異常(表現(xiàn)為總膽固醇高、高密度脂蛋白低)呈現(xiàn)正相關(guān)[14]。
為何多吃了些氨基酸,反而影響代謝、更易長肥肉?
目前推測限制BCAA后,一方面可能通過AMPK-mTOR-FoxO1途徑,影響肝臟脂肪相關(guān)基因(如ACCα與SCD-1)表達[15],并激活GCN2通路[16],幫助控制食欲、減少脂肪合成、加快脂肪酸氧化;另一方面,還可能通過調(diào)控限速酶BCKDH及下游信號,影響脂質(zhì)代謝[17]。
BCAA與延年益壽:
小酌怡情,貪杯傷身
長壽通路對生物體壽命的影響及其調(diào)控機制,是無數(shù)學(xué)者與極客們的奔赴之地。對于BCAA,好像無論走哪條路,mTOR這個點是如何也繞不過去的。
一直以來,根深蒂固刻在我們腦海中的“鐵律”是——抑制mTOR通路,有助于延長壽命。這也是多種“不老藥”(如雷帕霉素)的作用原理。然而,到了BCAA這兒,情況卻好像有點不同。
全網(wǎng)大搜索后,派派總結(jié)了目前BCAA對模式物種(有廣泛研究,對其生物現(xiàn)象有深入了解[18])壽命影響的試驗(見下表)。這些結(jié)果雖然很難直接類比人類,但借助這些探索,我們也許能為未來可能的人體臨床試驗找到方向。
這些外表看似毫無關(guān)聯(lián)的試驗結(jié)果,實則一番仔細(xì)分析后,都指向同一點:限制BCAA是有必要的,過高或過低的BCAA都可能對機體能量穩(wěn)態(tài)、神經(jīng)系統(tǒng)與腸道健康等方面造成損害,并最終影響壽命。
《BCAA服用建議》
BCAA不能少,但也絕不可多。在進行嚴(yán)謹(jǐn)?shù)目茖W(xué)檢測之前,大家或許想知道:我如何預(yù)判自己是否需要額外補充BCAA?又該如何正確去補充?
如果你有此類疑問,不如聯(lián)系時光派專屬小助理Hebe,發(fā)送暗號、領(lǐng)取為你精心整理的“《BCAA服用建議》”,一睹為快吧~
—— TIMEPIE ——
參考文獻
[1] Hole?ek, M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond) 15, 33 (2018). https://doi.org/10.1186/s12986-018-0271-1
[2] Liu, S., Miriyala, S., Keaton, M. A., Jordan, C. T., Wiedl, C., Clair, D. K., & Moscow, J. A. (2014). Metabolic effects of acute thiamine depletion are reversed by rapamycin in breast and leukemia cells. PloS one, 9(1), e85702. https://doi.org/10.1371/journal.pone.0085702
[3] East, M. P., Laitinen, T., & Asquith, C. (2021). BCKDK: an emerging kinase target for metabolic diseases and cancer. Nature reviews. Drug discovery, 20(7), 498. https://doi.org/10.1038/d41573-021-00107-6
[4] Zhang, Z. Y., Monleon, D., Verhamme, P., & Staessen, J. A. (2018). Branched-Chain Amino Acids as Critical Switches in Health and Disease. Hypertension (Dallas, Tex. : 1979), 72(5), 1012–1022. https://doi.org/10.1161/HYPERTENSIONAHA.118.10919
[5] Zhang, S., Zeng, X., Ren, M. et al. Novel metabolic and physiological functions of branched chain amino acids: a review. J Animal Sci Biotechnol 8, 10 (2017). https://doi.org/10.1186/s40104-016-0139-z
[6] Nishitani, S., Takehana, K., Fujitani, S., & Sonaka, I. (2005). Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. American journal of physiology. Gastrointestinal and liver physiology, 288(6), G1292–G1300. https://doi.org/10.1152/ajpgi.00510.2003
[7] Nishitani, S., Takehana, K., Fujitani, S., & Sonaka, I. (2005). Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. American journal of physiology. Gastrointestinal and liver physiology, 288(6), G1292–G1300. https://doi.org/10.1152/ajpgi.00510.2003
[8] Doi, M., Yamaoka, I., Fukunaga, T., & Nakayama, M. (2003). Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes. Biochemical and biophysical research communications, 312(4), 1111–1117. https://doi.org/10.1016/j.bbrc.2003.11.039
[9] Lynch, C., Adams, S. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10, 723–736 (2014). https://doi.org/10.1038/nrendo.2014.171
[10] Stephen L. Aronoff, Kathy Berkowitz, Barb Shreiner, Laura Want. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum Jul 2004, 17 (3) 183-190. https://doi.org/10.2337/diaspect.17.3.183
[11] Siddik, M., & Shin, A. C. (2019). Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond. Endocrinology and metabolism (Seoul, Korea), 34(3), 234–246. https://doi.org/10.3803/EnM.2019.34.3.234
[12] Kainulainen, H., Hulmi, J. J., & Kujala, U. M. (2013). Potential role of branched-chain amino acid catabolism in regulating fat oxidation. Exercise and sport sciences reviews, 41(4), 194–200. https://doi.org/10.1097/JES.0b013e3182a4e6b6
[13] Solon-Biet, S.M., Cogger, V.C., Pulpitel, T. et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab 1, 532–545 (2019). https://doi.org/10.1038/s42255-019-0059-2
[14] Yang, P., Hu, W., Fu, Z. et al. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population. Lipids Health Dis 15, 120 (2016).
[15] Bai, J., Greene, E., Li, W., Kidd, M. T., & Dridi, S. (2015). Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Molecular nutrition & food research, 59(6), 1171–1181. https://doi.org/10.1002/mnfr.201400918
[16] Guo, F., & Cavener, D. R. (2007). The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell metabolism, 5(2), 103–114. https://doi.org/10.1016/j.cmet.2007.01.001
[17] White, P. J., McGarrah, R. W., Grimsrud, P. A., Tso, S. C., Yang, W. H., Haldeman, J. M., Grenier-Larouche, T., An, J., Lapworth, A. L., Astapova, I., Hannou, S. A., George, T., Arlotto, M., Olson, L. B., Lai, M., Zhang, G. F., Ilkayeva, O., Herman, M. A., Wynn, R. M., Chuang, D. T., … Newgard, C. B. (2018). The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell metabolism, 27(6), 1281–1293.e7. https://doi.org/10.1016/j.cmet.2018.04.015
[18] https://zh.wikipedia.org/wiki/%E6%A8%A1%E5%BC%8F%E7%94%9F%E7%89%A9
[19] Edwards, C., Canfield, J., Copes, N., Brito, A., Rehan, M., Lipps, D., Brunquell, J., Westerheide, S. D., & Bradshaw, P. C. (2015). Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC genetics, 16(1), 8. https://doi.org/10.1186/s12863-015-0167-2Cite this article
[20] Mansfeld, J., Urban, N., Priebe, S. et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat Commun 6, 10043 (2015). https://doi.org/10.1038/ncomms10043
[21] D'Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., Caliaro, F., Corsetti, G., Bottinelli, R., Carruba, M. O., Valerio, A., & Nisoli, E. (2010). Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell metabolism, 12(4), 362–372. https://doi.org/10.1016/j.cmet.2010.08.016
[22] Iwasa, M., Kobayashi, Y., Mifuji-Moroka, R., Hara, N., Miyachi, H., Sugimoto, R., Tanaka, H., Fujita, N., Gabazza, E. C., & Takei, Y. (2013). Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PloS one, 8(7), e70309. https://doi.org/10.1371/journal.pone.0070309
[23] Tournissac, M., Vandal, M., Tremblay, C., Bourassa, P., Vancassel, S., Emond, V., Gangloff, A., & Calon, F. (2018). Dietary intake of branched-chain amino acids in a mouse model of Alzheimer's disease: Effects on survival, behavior, and neuropathology. Alzheimer's & dementia (New York, N. Y.), 4, 677–687. https://doi.org/10.1016/j.trci.2018.10.005
[24] Richardson, N.E., Konon, E.N., Schuster, H.S. et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and life span in mice. Nat Aging 1, 73–86 (2021). https://doi.org/10.1038/s43587-020-00006-2
[25] Lu, J., Temp, U., Müller-Hartmann, A. et al. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nat Aging 1, 60–72 (2021). https://doi.org/10.1038/s43587-020-00001-7
[26] Juricic, P., Gr?nke, S., & Partridge, L. (2020). Branched-Chain Amino Acids Have Equivalent Effects to Other Essential Amino Acids on Lifespan and Aging-Related Traits in Drosophila. The journals of gerontology. Series A, Biological sciences and medical sciences, 75(1), 24–31. https://doi.org/10.1093/gerona/glz080