任何一個(gè)用過(guò)或?qū)W過(guò)C的人對(duì)malloc都不會(huì)陌生。大家都知道m(xù)alloc可以分配一段連續(xù)的內(nèi)存空間,并且在不再使用時(shí)可以通過(guò)free釋放掉。但是,許多程序員對(duì)malloc背后的事情并不熟悉,許多人甚至把malloc當(dāng)做操作系統(tǒng)所提供的系統(tǒng)調(diào)用或C的關(guān)鍵字。實(shí)際上,malloc只是C的標(biāo)準(zhǔn)庫(kù)中提供的一個(gè)普通函數(shù),而且實(shí)現(xiàn)malloc的基本思想并不復(fù)雜,任何一個(gè)對(duì)C和操作系統(tǒng)有些許了解的程序員都可以很容易理解。
這篇文章通過(guò)實(shí)現(xiàn)一個(gè)簡(jiǎn)單的malloc來(lái)描述malloc背后的機(jī)制。當(dāng)然與現(xiàn)有C的標(biāo)準(zhǔn)庫(kù)實(shí)現(xiàn)(例如glibc)相比,我們實(shí)現(xiàn)的malloc并不是特別高效,但是這個(gè)實(shí)現(xiàn)比目前真實(shí)的malloc實(shí)現(xiàn)要簡(jiǎn)單很多,因此易于理解。重要的是,這個(gè)實(shí)現(xiàn)和真實(shí)實(shí)現(xiàn)在基本原理上是一致的。
這篇文章將首先介紹一些所需的基本知識(shí),如操作系統(tǒng)對(duì)進(jìn)程的內(nèi)存管理以及相關(guān)的系統(tǒng)調(diào)用,然后逐步實(shí)現(xiàn)一個(gè)簡(jiǎn)單的malloc。為了簡(jiǎn)單起見(jiàn),這篇文章將只考慮x86_64體系結(jié)構(gòu),操作系統(tǒng)為L(zhǎng)inux。
在實(shí)現(xiàn)malloc之前,先要相對(duì)正式地對(duì)malloc做一個(gè)定義。
根據(jù)標(biāo)準(zhǔn)C庫(kù)函數(shù)的定義,malloc具有如下原型:
- void* malloc(size_t size);
這個(gè)函數(shù)要實(shí)現(xiàn)的功能是在系統(tǒng)中分配一段連續(xù)的可用的內(nèi)存,具體有如下要求:
對(duì)于malloc更多的說(shuō)明可以在命令行中鍵入以下命令查看:
- man malloc
在實(shí)現(xiàn)malloc之前,需要先解釋一些Linux系統(tǒng)內(nèi)存相關(guān)的知識(shí)。
為了簡(jiǎn)單,現(xiàn)代操作系統(tǒng)在處理內(nèi)存地址時(shí),普遍采用虛擬內(nèi)存地址技術(shù)。即在匯編程序(或機(jī)器語(yǔ)言)層面,當(dāng)涉及內(nèi)存地址時(shí),都是使用虛擬內(nèi)存地址。采用這種技術(shù)時(shí),每個(gè)進(jìn)程仿佛自己獨(dú)享一片字節(jié)的內(nèi)存,其中是機(jī)器位數(shù)。例如在64位CPU和64位操作系統(tǒng)下,每個(gè)進(jìn)程的虛擬地址空間為Byte。
這種虛擬地址空間的作用主要是簡(jiǎn)化程序的編寫(xiě)及方便操作系統(tǒng)對(duì)進(jìn)程間內(nèi)存的隔離管理,真實(shí)中的進(jìn)程不太可能(也用不到)如此大的內(nèi)存空間,實(shí)際能用到的內(nèi)存取決于物理內(nèi)存大小。
由于在機(jī)器語(yǔ)言層面都是采用虛擬地址,當(dāng)實(shí)際的機(jī)器碼程序涉及到內(nèi)存操作時(shí),需要根據(jù)當(dāng)前進(jìn)程運(yùn)行的實(shí)際上下文將虛擬地址轉(zhuǎn)換為物理內(nèi)存地址,才能實(shí)現(xiàn)對(duì)真實(shí)內(nèi)存數(shù)據(jù)的操作。這個(gè)轉(zhuǎn)換一般由一個(gè)叫MMU(Memory Management Unit)的硬件完成。
在現(xiàn)代操作系統(tǒng)中,不論是虛擬內(nèi)存還是物理內(nèi)存,都不是以字節(jié)為單位進(jìn)行管理的,而是以頁(yè)(Page)為單位。一個(gè)內(nèi)存頁(yè)是一段固定大小的連續(xù)內(nèi)存地址的總稱,具體到Linux中,典型的內(nèi)存頁(yè)大小為4096Byte(4K)。
所以內(nèi)存地址可以分為頁(yè)號(hào)和頁(yè)內(nèi)偏移量。下面以64位機(jī)器,4G物理內(nèi)存,4K頁(yè)大小為例,虛擬內(nèi)存地址和物理內(nèi)存地址的組成如下:
上面是虛擬內(nèi)存地址,下面是物理內(nèi)存地址。由于頁(yè)大小都是4K,所以頁(yè)內(nèi)便宜都是用低12位表示,而剩下的高地址表示頁(yè)號(hào)。
MMU映射單位并不是字節(jié),而是頁(yè),這個(gè)映射通過(guò)查一個(gè)常駐內(nèi)存的數(shù)據(jù)結(jié)構(gòu)頁(yè)表來(lái)實(shí)現(xiàn)。現(xiàn)在計(jì)算機(jī)具體的內(nèi)存地址映射比較復(fù)雜,為了加快速度會(huì)引入一系列緩存和優(yōu)化,例如TLB等機(jī)制。下面給出一個(gè)經(jīng)過(guò)簡(jiǎn)化的內(nèi)存地址翻譯示意圖,雖然經(jīng)過(guò)了簡(jiǎn)化,但是基本原理與現(xiàn)代計(jì)算機(jī)真實(shí)的情況的一致的。
我們知道一般將內(nèi)存看做磁盤(pán)的的緩存,有時(shí)MMU在工作時(shí),會(huì)發(fā)現(xiàn)頁(yè)表表明某個(gè)內(nèi)存頁(yè)不在物理內(nèi)存中,此時(shí)會(huì)觸發(fā)一個(gè)缺頁(yè)異常(Page Fault),此時(shí)系統(tǒng)會(huì)到磁盤(pán)中相應(yīng)的地方將磁盤(pán)頁(yè)載入到內(nèi)存中,然后重新執(zhí)行由于缺頁(yè)而失敗的機(jī)器指令。關(guān)于這部分,因?yàn)榭梢钥醋鰧?duì)malloc實(shí)現(xiàn)是透明的,所以不再詳細(xì)講述,有興趣的可以參考《深入理解計(jì)算機(jī)系統(tǒng)》相關(guān)章節(jié)。
最后附上一張?jiān)诰S基百科找到的更加符合真實(shí)地址翻譯的流程供大家參考,這張圖加入了TLB和缺頁(yè)異常的流程(圖片來(lái)源頁(yè))。
明白了虛擬內(nèi)存和物理內(nèi)存的關(guān)系及相關(guān)的映射機(jī)制,下面看一下具體在一個(gè)進(jìn)程內(nèi)是如何排布內(nèi)存的。
以Linux 64位系統(tǒng)為例。理論上,64bit內(nèi)存地址可用空間為0x0000000000000000 ~ 0xFFFFFFFFFFFFFFFF,這是個(gè)相當(dāng)龐大的空間,Linux實(shí)際上只用了其中一小部分(256T)。
根據(jù)Linux內(nèi)核相關(guān)文檔描述,Linux64位操作系統(tǒng)僅使用低47位,高17位做擴(kuò)展(只能是全0或全1)。所以,實(shí)際用到的地址為空間為0x0000000000000000 ~ 0x00007FFFFFFFFFFF和0xFFFF800000000000 ~ 0xFFFFFFFFFFFFFFFF,其中前面為用戶空間(User Space),后者為內(nèi)核空間(Kernel Space)。圖示如下:
對(duì)用戶來(lái)說(shuō),主要關(guān)注的空間是User Space。將User Space放大后,可以看到里面主要分為如下幾段:
下面我們主要關(guān)注Heap區(qū)域的操作。對(duì)整個(gè)Linux內(nèi)存排布有興趣的同學(xué)可以參考其它資料。
一般來(lái)說(shuō),malloc所申請(qǐng)的內(nèi)存主要從Heap區(qū)域分配(本文不考慮通過(guò)mmap申請(qǐng)大塊內(nèi)存的情況)。
由上文知道,進(jìn)程所面對(duì)的虛擬內(nèi)存地址空間,只有按頁(yè)映射到物理內(nèi)存地址,才能真正使用。受物理存儲(chǔ)容量限制,整個(gè)堆虛擬內(nèi)存空間不可能全部映射到實(shí)際的物理內(nèi)存。Linux對(duì)堆的管理示意如下:
Linux維護(hù)一個(gè)break指針,這個(gè)指針指向堆空間的某個(gè)地址。從堆起始地址到break之間的地址空間為映射好的,可以供進(jìn)程訪問(wèn);而從break往上,是未映射的地址空間,如果訪問(wèn)這段空間則程序會(huì)報(bào)錯(cuò)。
由上文知道,要增加一個(gè)進(jìn)程實(shí)際的可用堆大小,就需要將break指針向高地址移動(dòng)。Linux通過(guò)brk和sbrk系統(tǒng)調(diào)用操作break指針。兩個(gè)系統(tǒng)調(diào)用的原型如下:
- int brk(void *addr);
- void *sbrk(intptr_t increment);
brk將break指針直接設(shè)置為某個(gè)地址,而sbrk將break從當(dāng)前位置移動(dòng)increment所指定的增量。brk在執(zhí)行成功時(shí)返回0,否則返回-1并設(shè)置errno為ENOMEM;sbrk成功時(shí)返回break移動(dòng)之前所指向的地址,否則返回(void *)-1。
一個(gè)小技巧是,如果將increment設(shè)置為0,則可以獲得當(dāng)前break的地址。
另外需要注意的是,由于Linux是按頁(yè)進(jìn)行內(nèi)存映射的,所以如果break被設(shè)置為沒(méi)有按頁(yè)大小對(duì)齊,則系統(tǒng)實(shí)際上會(huì)在最后映射一個(gè)完整的頁(yè),從而實(shí)際已映射的內(nèi)存空間比break指向的地方要大一些。但是使用break之后的地址是很危險(xiǎn)的(盡管也許break之后確實(shí)有一小塊可用內(nèi)存地址)。
系統(tǒng)對(duì)每一個(gè)進(jìn)程所分配的資源不是無(wú)限的,包括可映射的內(nèi)存空間,因此每個(gè)進(jìn)程有一個(gè)rlimit表示當(dāng)前進(jìn)程可用的資源上限。這個(gè)限制可以通過(guò)getrlimit系統(tǒng)調(diào)用得到,下面代碼獲取當(dāng)前進(jìn)程虛擬內(nèi)存空間的rlimit:
- int main() {
- struct rlimit *limit = (struct rlimit *)malloc(sizeof(struct rlimit));
- getrlimit(RLIMIT_AS, limit);
- printf("soft limit: %ld, hard limit: %ld\n", limit->rlim_cur, limit->rlim_max);
- }
其中rlimit是一個(gè)結(jié)構(gòu)體:
- struct rlimit {
- rlim_t rlim_cur; /* Soft limit */
- rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */
- };
每種資源有軟限制和硬限制,并且可以通過(guò)setrlimit對(duì)rlimit進(jìn)行有條件設(shè)置。其中硬限制作為軟限制的上限,非特權(quán)進(jìn)程只能設(shè)置軟限制,且不能超過(guò)硬限制。
在正式開(kāi)始討論malloc的實(shí)現(xiàn)前,我們可以利用上述知識(shí)實(shí)現(xiàn)一個(gè)簡(jiǎn)單但幾乎沒(méi)法用于真實(shí)的玩具malloc,權(quán)當(dāng)對(duì)上面知識(shí)的復(fù)習(xí):
- /* 一個(gè)玩具malloc */
- #include <sys/types.h>
- #include <unistd.h>
- void *malloc(size_t size)
- {
- void *p;
- p = sbrk(0);
- if (sbrk(size) == (void *)-1)
- return NULL;
- return p;
- }
這個(gè)malloc每次都在當(dāng)前break的基礎(chǔ)上增加size所指定的字節(jié)數(shù),并將之前break的地址返回。這個(gè)malloc由于對(duì)所分配的內(nèi)存缺乏記錄,不便于內(nèi)存釋放,所以無(wú)法用于真實(shí)場(chǎng)景。
下面嚴(yán)肅點(diǎn)討論malloc的實(shí)現(xiàn)方案。
首先我們要確定所采用的數(shù)據(jù)結(jié)構(gòu)。一個(gè)簡(jiǎn)單可行方案是將堆內(nèi)存空間以塊(Block)的形式組織起來(lái),每個(gè)塊由meta區(qū)和數(shù)據(jù)區(qū)組成,meta區(qū)記錄數(shù)據(jù)塊的元信息(數(shù)據(jù)區(qū)大小、空閑標(biāo)志位、指針等等),數(shù)據(jù)區(qū)是真實(shí)分配的內(nèi)存區(qū)域,并且數(shù)據(jù)區(qū)的第一個(gè)字節(jié)地址即為malloc返回的地址。
可以用如下結(jié)構(gòu)體定義一個(gè)block:
- typedef struct s_block *t_block;
- struct s_block {
- size_t size; /* 數(shù)據(jù)區(qū)大小 */
- t_block next; /* 指向下個(gè)塊的指針 */
- int free; /* 是否是空閑塊 */
- int padding; /* 填充4字節(jié),保證meta塊長(zhǎng)度為8的倍數(shù) */
- char data[1] /* 這是一個(gè)虛擬字段,表示數(shù)據(jù)塊的第一個(gè)字節(jié),長(zhǎng)度不應(yīng)計(jì)入meta */
- };
由于我們只考慮64位機(jī)器,為了方便,我們?cè)诮Y(jié)構(gòu)體最后填充一個(gè)int,使得結(jié)構(gòu)體本身的長(zhǎng)度為8的倍數(shù),以便內(nèi)存對(duì)齊。示意圖如下:
現(xiàn)在考慮如何在block鏈中查找合適的block。一般來(lái)說(shuō)有兩種查找算法:
兩種方法各有千秋,best fit具有較高的內(nèi)存使用率(payload較高),而first fit具有更好的運(yùn)行效率。這里我們采用first fit算法。
- /* First fit */
- t_block find_block(t_block *last, size_t size) {
- t_block b = first_block;
- while(b && !(b->free && b->size >= size)) {
- *last = b;
- b = b->next;
- }
- return b;
- }
find_block從frist_block開(kāi)始,查找第一個(gè)符合要求的block并返回block起始地址,如果找不到這返回NULL。這里在遍歷時(shí)會(huì)更新一個(gè)叫l(wèi)ast的指針,這個(gè)指針始終指向當(dāng)前遍歷的block。這是為了如果找不到合適的block而開(kāi)辟新block使用的,具體會(huì)在接下來(lái)的一節(jié)用到。
如果現(xiàn)有block都不能滿足size的要求,則需要在鏈表最后開(kāi)辟一個(gè)新的block。這里關(guān)鍵是如何只使用sbrk創(chuàng)建一個(gè)struct:
- #define BLOCK_SIZE 24 /* 由于存在虛擬的data字段,sizeof不能正確計(jì)算meta長(zhǎng)度,這里手工設(shè)置 */
- t_block extend_heap(t_block last, size_t s) {
- t_block b;
- b = sbrk(0);
- if(sbrk(BLOCK_SIZE + s) == (void *)-1)
- return NULL;
- b->size = s;
- b->next = NULL;
- if(last)
- last->next = b;
- b->free = 0;
- return b;
- }
First fit有一個(gè)比較致命的缺點(diǎn),就是可能會(huì)讓很小的size占據(jù)很大的一塊block,此時(shí),為了提高payload,應(yīng)該在剩余數(shù)據(jù)區(qū)足夠大的情況下,將其分裂為一個(gè)新的block,示意如下:
實(shí)現(xiàn)代碼:
- void split_block(t_block b, size_t s) {
- t_block new;
- new = b->data + s;
- new->size = b->size - s - BLOCK_SIZE ;
- new->next = b->next;
- new->free = 1;
- b->size = s;
- b->next = new;
- }
有了上面的代碼,我們可以利用它們整合成一個(gè)簡(jiǎn)單但初步可用的malloc。注意首先我們要定義個(gè)block鏈表的頭first_block,初始化為NULL;另外,我們需要剩余空間至少有BLOCK_SIZE + 8才執(zhí)行分裂操作。
由于我們希望malloc分配的數(shù)據(jù)區(qū)是按8字節(jié)對(duì)齊,所以在size不為8的倍數(shù)時(shí),我們需要將size調(diào)整為大于size的最小的8的倍數(shù):
- size_t align8(size_t s) {
- if(s & 0x7 == 0)
- return s;
- return ((s >> 3) + 1) << 3;
- }
- #define BLOCK_SIZE 24
- void *first_block=NULL;
- /* other functions... */
- void *malloc(size_t size) {
- t_block b, last;
- size_t s;
- /* 對(duì)齊地址 */
- s = align8(size);
- if(first_block) {
- /* 查找合適的block */
- last = first_block;
- b = find_block(&last, s);
- if(b) {
- /* 如果可以,則分裂 */
- if ((b->size - s) >= ( BLOCK_SIZE + 8))
- split_block(b, s);
- b->free = 0;
- } else {
- /* 沒(méi)有合適的block,開(kāi)辟一個(gè)新的 */
- b = extend_heap(last, s);
- if(!b)
- return NULL;
- }
- } else {
- b = extend_heap(NULL, s);
- if(!b)
- return NULL;
- first_block = b;
- }
- return b->data;
- }
有了malloc,實(shí)現(xiàn)calloc只要兩步:
由于我們的數(shù)據(jù)區(qū)是按8字節(jié)對(duì)齊的,所以為了提高效率,我們可以每8字節(jié)一組置0,而不是一個(gè)一個(gè)字節(jié)設(shè)置。我們可以通過(guò)新建一個(gè)size_t指針,將內(nèi)存區(qū)域強(qiáng)制看做size_t類型來(lái)實(shí)現(xiàn)。
- void *calloc(size_t number, size_t size) {
- size_t *new;
- size_t s8, i;
- new = malloc(number * size);
- if(new) {
- s8 = align8(number * size) >> 3;
- for(i = 0; i < s8; i++)
- new[i] = 0;
- }
- return new;
- }
free的實(shí)現(xiàn)并不像看上去那么簡(jiǎn)單,這里我們要解決兩個(gè)關(guān)鍵問(wèn)題:
首先我們要保證傳入free的地址是有效的,這個(gè)有效包括兩方面:
第一個(gè)問(wèn)題比較好解決,只要進(jìn)行地址比較就可以了,關(guān)鍵是第二個(gè)問(wèn)題。這里有兩種解決方案:一是在結(jié)構(gòu)體內(nèi)埋一個(gè)magic number字段,free之前通過(guò)相對(duì)偏移檢查特定位置的值是否為我們?cè)O(shè)置的magic number,另一種方法是在結(jié)構(gòu)體內(nèi)增加一個(gè)magic pointer,這個(gè)指針指向數(shù)據(jù)區(qū)的第一個(gè)字節(jié)(也就是在合法時(shí)free時(shí)傳入的地址),我們?cè)趂ree前檢查magic pointer是否指向參數(shù)所指地址。這里我們采用第二種方案:
首先我們?cè)诮Y(jié)構(gòu)體中增加magic pointer(同時(shí)要修改BLOCK_SIZE):
- typedef struct s_block *t_block;
- struct s_block {
- size_t size; /* 數(shù)據(jù)區(qū)大小 */
- t_block next; /* 指向下個(gè)塊的指針 */
- int free; /* 是否是空閑塊 */
- int padding; /* 填充4字節(jié),保證meta塊長(zhǎng)度為8的倍數(shù) */
- void *ptr; /* Magic pointer,指向data */
- char data[1] /* 這是一個(gè)虛擬字段,表示數(shù)據(jù)塊的第一個(gè)字節(jié),長(zhǎng)度不應(yīng)計(jì)入meta */
- };
然后我們定義檢查地址合法性的函數(shù):
- t_block get_block(void *p) {
- char *tmp;
- tmp = p;
- return (p = tmp -= BLOCK_SIZE);
- }
- int valid_addr(void *p) {
- if(first_block) {
- if(p > first_block && p < sbrk(0)) {
- return p == (get_block(p))->ptr;
- }
- }
- return 0;
- }
當(dāng)多次malloc和free后,整個(gè)內(nèi)存池可能會(huì)產(chǎn)生很多碎片block,這些block很小,經(jīng)常無(wú)法使用,甚至出現(xiàn)許多碎片連在一起,雖然總體能滿足某此malloc要求,但是由于分割成了多個(gè)小block而無(wú)法fit,這就是碎片問(wèn)題。
一個(gè)簡(jiǎn)單的解決方式時(shí)當(dāng)free某個(gè)block時(shí),如果發(fā)現(xiàn)它相鄰的block也是free的,則將block和相鄰block合并。為了滿足這個(gè)實(shí)現(xiàn),需要將s_block改為雙向鏈表。修改后的block結(jié)構(gòu)如下:
- typedef struct s_block *t_block;
- struct s_block {
- size_t size; /* 數(shù)據(jù)區(qū)大小 */
- t_block prev; /* 指向上個(gè)塊的指針 */
- t_block next; /* 指向下個(gè)塊的指針 */
- int free; /* 是否是空閑塊 */
- int padding; /* 填充4字節(jié),保證meta塊長(zhǎng)度為8的倍數(shù) */
- void *ptr; /* Magic pointer,指向data */
- char data[1] /* 這是一個(gè)虛擬字段,表示數(shù)據(jù)塊的第一個(gè)字節(jié),長(zhǎng)度不應(yīng)計(jì)入meta */
- };
合并方法如下:
- t_block fusion(t_block b) {
- if (b->next && b->next->free) {
- b->size += BLOCK_SIZE + b->next->size;
- b->next = b->next->next;
- if(b->next)
- b->next->prev = b;
- }
- return b;
- }
有了上述方法,free的實(shí)現(xiàn)思路就比較清晰了:首先檢查參數(shù)地址的合法性,如果不合法則不做任何事;否則,將此block的free標(biāo)為1,并且在可以的情況下與后面的block進(jìn)行合并。如果當(dāng)前是最后一個(gè)block,則回退break指針釋放進(jìn)程內(nèi)存,如果當(dāng)前block是最后一個(gè)block,則回退break指針并設(shè)置first_block為NULL。實(shí)現(xiàn)如下:
- void free(void *p) {
- t_block b;
- if(valid_addr(p)) {
- b = get_block(p);
- b->free = 1;
- if(b->prev && b->prev->free)
- b = fusion(b->prev);
- if(b->next)
- fusion(b);
- else {
- if(b->prev)
- b->prev->prev = NULL;
- else
- first_block = NULL;
- brk(b);
- }
- }
- }
為了實(shí)現(xiàn)realloc,我們首先要實(shí)現(xiàn)一個(gè)內(nèi)存復(fù)制方法。如同calloc一樣,為了效率,我們以8字節(jié)為單位進(jìn)行復(fù)制:
- void copy_block(t_block src, t_block dst) {
- size_t *sdata, *ddata;
- size_t i;
- sdata = src->ptr;
- ddata = dst->ptr;
- for(i = 0; (i * 8) < src->size && (i * 8) < dst->size; i++)
- ddata[i] = sdata[i];
- }
然后我們開(kāi)始實(shí)現(xiàn)realloc。一個(gè)簡(jiǎn)單(但是低效)的方法是malloc一段內(nèi)存,然后將數(shù)據(jù)復(fù)制過(guò)去。但是我們可以做的更高效,具體可以考慮以下幾個(gè)方面:
下面是realloc的實(shí)現(xiàn):
- void *realloc(void *p, size_t size) {
- size_t s;
- t_block b, new;
- void *newp;
- if (!p)
- /* 根據(jù)標(biāo)準(zhǔn)庫(kù)文檔,當(dāng)p傳入NULL時(shí),相當(dāng)于調(diào)用malloc */
- return malloc(size);
- if(valid_addr(p)) {
- s = align8(size);
- b = get_block(p);
- if(b->size >= s) {
- if(b->size - s >= (BLOCK_SIZE + 8))
- split_block(b,s);
- } else {
- /* 看是否可進(jìn)行合并 */
- if(b->next && b->next->free
- && (b->size + BLOCK_SIZE + b->next->size) >= s) {
- fusion(b);
- if(b->size - s >= (BLOCK_SIZE + 8))
- split_block(b, s);
- } else {
- /* 新malloc */
- newp = malloc (s);
- if (!newp)
- return NULL;
- new = get_block(newp);
- copy_block(b, new);
- free(p);
- return(newp);
- }
- }
- return (p);
- }
- return NULL;
- }
以上是一個(gè)較為簡(jiǎn)陋,但是初步可用的malloc實(shí)現(xiàn)。還有很多遺留的可能優(yōu)化點(diǎn),例如:
還有很多可能的優(yōu)化,這里不一一贅述。下面附上一些參考文獻(xiàn),有興趣的同學(xué)可以更深入研究。
聯(lián)系客服