ESB Integration Patterns 發(fā)布時間:2006-01-10 10:01:59 作者:csdn 出處:csdn 語言:中文 閱讀次數(shù):86次 |
The past several years have seen some significant technology trends, such as service-oriented architecture (SOA), enterprise application integration (EAI), business-to-business (B2B), and Web services. These technologies have attempted to address the challenges of improving the results and increasing the value of integrated business processes, and have garnered the widespread attention of IT leaders, vendors, and industry analysts. The enterprise service bus (ESB) draws the best traits from these and other technology trends to form a new architecture for integration. The ESB concept is a new approach to integration that can provide the underpinnings for a loosely coupled integration network that can scale beyond the limits of a hub-and-spoke EAI broker. An ESB is a highly distributed, event-driven, enterprise SOA that is geared toward integration. It is a standards-based integration platform that combines messaging, Web services, data transformation, and intelligent routing to reliably connect and coordinate the interaction of significant numbers of diverse applications across extended enterprises with transactional integrity. An extended enterprise represents an organization and its business partners, which are separated by both business boundaries and physical boundaries. In an extended enterprise, even the applications that are under the control of a single corporation may be separated by geographic dispersion, corporate firewalls, and interdepartmental security policies. An ESB is designed to be pervasive, meaning that it is capable of spanning the extended enterprise. But an ESB is also pervasive in the sense that it is capable of being used as a general-purpose integration environment that is suitable for any project, no matter how large or how small. The SOA of the ESB An SOA provides an integration architect with a broad abstract view of applications and integration components to be dealt with as high-level services. Service components in an ESB expose coarse-grained, message-driven interfaces for the purpose of sharing data between applications, both synchronously and asynchronously. In an ESB, applications and event-driven services are connected through the bus as abstract endpoints. These abstract endpoints are tied together in a loosely coupled SOA, which allows them to operate independently from one another. An integration architect uses an ESB to tie together assemblies of abstract endpoints that form composite business processes, or process flows (see Figure 1). What the endpoints actually represent can be very diverse. For example, an endpoint may represent a discrete operation, like a specialized service for calculating sales tax. The underlying implementation of the endpoint could represent a local binding to an application adaptor, or a callout to an external Web service. The applications and services can be physically located anywhere that is accessible by the bus. Itinerary-Based Routing Configuration, Not Coding With its distributed deployment infrastructure, an ESB can efficiently provide central configuration, deployment, and management of services that are distributed across the extended enterprise. Artifacts that affect the behavior of an integration service, such as an XSLT stylesheet that can be used by a data transformation service, are also configurable in an ESB. The ESB Service Container A service container is simple and lightweight, but it can have many discrete functions. As shown in Figure 2, service containers take on different roles as they are deployed across an ESB. In its simplest form, a service container is an operating system process that can be managed by the ESB"s invocation and management framework. A service container provides a number of facilities for the service implementation such as event dispatch, thread management, security (encryption, authentication, and access control), and QoS via reliable message delivery. Unlike its distant cousins, the J2EE application server container and the EAI broker, the ESB service container allows the selective deployment of integration functionality exactly when and where you need it, and nothing more than what you need. A service container can host a single service, or can combine multiple services in a single container environment (see Figure 3). An ESB service is also scalable in a fashion that is independent of all other ESB services. A service container may manage multiple instances of a service within a container. Several containers may also be distributed across multiple machines for the purposes of scaling up to handle increased message volume (see Figure 4). The ESB Service Interface Messages are received by the service from a configurable entry endpoint. Upon completion of its task, the service implementation simply places its output message in the exit endpoint to be carried to its next destination. The next destination may be a reply to the original sender of the message, or more often may be sent along to the next leg of its journey using a forwarding address. The output message may be the same message that it received. The service may modify the message before sending it to the exit endpoint. Or, in the service may create a completely new message to serve as a "response" to the incoming message and send the new message in the exit endpoint. What is placed in the exit endpoint depends on the context of the situation and the message being processed. In the case of a content-based routing (CBR) service, the message content will be unchanged, with new forwarding addresses set in the message header. In more sophisticated cases, one input message can transform into many outputs, each with its own routing information. For example, a splitter service can receive a purchase order document, split it into multiple output messages, and send out the purchase order and its individual line items as separate messages to an inventory or order fulfillment service. The service implementation in this case does not have to be written using traditional coding practices; it can be implemented as a specialized transformation service that applies an XSLT stylesheet to the purchase order document to produce the multiple outputs. |