国产一级a片免费看高清,亚洲熟女中文字幕在线视频,黄三级高清在线播放,免费黄色视频在线看

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
特征向量
  數(shù)學上,線性變換的特征向量(本征向量)是一個非退化的向量,其方向在該變換[2]下不變。該向量在此變換下縮放的比例稱為其特征值本征值)。 圖1給出了一幅圖像的例子。一個變換通??梢杂善涮卣髦岛吞卣飨蛄客耆枋?。特征空間是相同特征值的特征向量的集合。
  這些概念在純數(shù)學和應(yīng)用數(shù)學的很多領(lǐng)域發(fā)揮著巨大的作用—在線性代數(shù),泛函分析,甚至在一些非線性的情況中也有著顯著的重要性。
  “特征”一詞來自德語的eigen。1904年希爾伯特首先在這個意義下使用了這個詞,更早亥爾姆霍爾茲也在相關(guān)意義下使用過該詞。eigen一詞可翻譯為“自身的”,“特定于...的”,“有特征的”或者“個體的”—這強調(diào)了特征值對于定義特定的變換有多重要。
  定義
  空間上的變換—如平移(移動原點),旋轉(zhuǎn)反射,拉伸,壓縮,或者這些變換的組合;以及其它變換—可以通過它們在向量上的作用來顯示。向量可以用從一點指向另一點的箭頭來表示。
  變換的特征向量是指在變換下不變或者簡單地乘以一個縮放因子的非零向量[3]。
  特征向量的特征值是它所乘的那個縮放因子。
  特征空間就是由所有有著相同特征值的特征向量組成的空間,還包括零向量,但要注意零向量本身不是特征向量。
  變換的主特征向量是對應(yīng)特征值最大的特征向量。
  特征值的幾何重次是相應(yīng)特征空間的維數(shù)。
  有限維向量空間上一個變換的譜是其所有特征值的集合。
  例如,三維空間旋轉(zhuǎn)的特征向量是沿著旋轉(zhuǎn)軸的一個向量,相應(yīng)的特征值是1,相應(yīng)的特征空間包含所有和該軸平行的向量。該特征空間是一個一維空間,因而特征值1的幾何重次是1。特征值1是旋轉(zhuǎn)的譜當中唯一的實特征值。
  參看:特征平面
  例子
  隨著地球的自轉(zhuǎn),每個從地心往外指的箭頭都在旋轉(zhuǎn),除了在轉(zhuǎn)軸上的那些箭頭。考慮地球在一小時自轉(zhuǎn)后的變換:地心指向地理南極的箭頭是這個變換的一個特征向量,但是從地心指向赤道任何一處的箭頭不會是一個特征向量。因為指向極點的箭頭沒有被地球的自轉(zhuǎn)拉伸,它的特征值是1。
  另一個例子是,薄金屬板關(guān)于一個固定點均勻伸展,使得板上每一個點到該固定點的距離翻倍。這個伸展是一個有特征值2的變換。從該固定點到板上任何一點的向量是一個特征向量,而相應(yīng)的特征空間是所有這些向量的集合。
  但是,三維幾何空間不是唯一的向量空間。例如,考慮兩端固定的拉緊的繩子,就像弦樂器的振動弦那樣(圖2.)。振動弦的原子到它們在弦靜止時的位置之間的帶符號那些距離視為一個空間中的一個向量的分量,那個空間的維數(shù)就是弦上原子的個數(shù)。
  如果考慮繩子隨著時間流逝發(fā)生的變換,它的特征向量,或者說特征函數(shù)(如果將繩子假設(shè)為一個連續(xù)媒介),就是它的駐波—也就是那些通過空氣的傳播讓人們聽到弓弦和吉他的撥動聲的振動。駐波對應(yīng)于弦的特定振動,它們使得弦的形狀隨著時間變化而伸縮一個因子(特征值)。和弦相關(guān)的該向量的每個分量乘上了一個依賴于時間的因子。駐波的振幅(特征值)在考慮到阻尼的情況下逐漸減弱。因此可以將每個特征向量對應(yīng)于一個壽命,并將特征向量的概念和共振的概念聯(lián)系起來。
  特征值方程
  從數(shù)學上看,如果向量v與變換滿足
  則稱向量v是變換的一個特征向量,λ是相應(yīng)的特征值。其中是將變換作用于v得到的向量。這一等式被稱作“特征值方程”。
  假設(shè)是一個線性變換,那么v可以由其所在向量空間的一組基表示為:
  其中vi是向量在基向量上的投影(即坐標),這里假設(shè)向量空間為n 維。由此,可以直接以坐標向量表示。利用基向量,線性變換也可以用一個簡單的矩陣乘法表示。上述的特征值方程可以表示為:
  但是,有時候用矩陣形式寫下特征值方程是不自然甚或不可能的。例如在向量空間是無窮維的時候,上述的弦的情況就是一例。取決于變換和它所作用的空間的性質(zhì),有時將特征值方程表示為一組微分方程更好。若是一個微分算子,其特征向量通常稱為該微分算子的特征函數(shù)。例如,微分本身是一個線性變換因為(若M和N是可微函數(shù),而a和b是常數(shù))
  考慮對于時間t的微分。其特征函數(shù)滿足如下特征值方程:
  ,
  其中λ是該函數(shù)所對應(yīng)的特征值。這樣一個時間的函數(shù),如果λ = 0,它就不變,如果λ為正,它就按比例增長,如果λ是負的,它就按比例衰減。例如,理想化的兔子的總數(shù)在兔子更多的地方繁殖更快,從而滿足一個正λ的特征值方程。
  該特征值方程的一個解是N = exp(λt),也即指數(shù)函數(shù);這樣,該函數(shù)是微分算子d/dt的特征值為λ的特征函數(shù)。若λ是負數(shù),我們稱N的演變?yōu)橹笖?shù)衰減;若它是正數(shù),則稱指數(shù)增長。λ的值可以是一個任意復(fù)數(shù)。因此d/dt的譜是整個復(fù)平面。在這個例子中,算子d/dt作用的空間是單變量可微函數(shù)的空間。該空間有無窮維(因為不是每一個可微函數(shù)都可以用有限的基函數(shù)的線性組合來表達的)。但是,每個特征值λ所對應(yīng)的特征空間是一維的。它就是所有形為N = N0exp(λt)的函數(shù)的集合。N0是任意常數(shù),也就在t=0的初始數(shù)量。
  譜定理
  關(guān)于此話題更進一步的細節(jié),見譜定理。
  譜定理在有限維的情況,將所有可對角化的矩陣作了分類:它顯示一個矩陣是可對角化的,當且僅當它是一個正規(guī)矩陣。注意這包括自共軛(厄爾米特)的情況。這很有用,因為對角化矩陣T的函數(shù)f(T)(譬如波萊爾函數(shù)f)的概念是清楚的。在采用更一般的矩陣的函數(shù)的時候定理的作用就更明顯了。例如,若f是解析的,則它的形式冪級數(shù),若用T取代x,可以看作在矩陣的巴拿赫空間中絕對收斂。譜定理也允許方便地定義正算子的唯一的平方根。
  譜定理可以推廣到希爾伯特空間上的有界正規(guī)算子,或者無界自共軛算子的情況。
  矩陣的特征值和特征向量
  計算矩陣的特征值和特征向量
  假設(shè)我們想要計算給定矩陣的特征值。若矩陣很小,我們可以用特征多項式進行符號演算。但是,對于大型矩陣這通常是不可行的,在那種情況我們必須采用數(shù)值方法。
  符號演算
  關(guān)于此話題更進一步的細節(jié),見矩陣特征值的符號演算。
  求特征值
  描述正方形矩陣的特征值的重要工具是特征多項式:說λ是A的特征值等價于說線性系統(tǒng) (A – λI) v = 0 (其中I是恒等矩陣)有非零解v (一個特征向量),因此等價于行列式:
  函數(shù)p(λ) = det(A – λI)是λ的多項式,因為行列式定義為一些乘積的和。 這就是A的特征多項式:矩陣的特征值也就是其特征多項式零點。
  一個矩陣A的特征值可以通過求解方程pA(λ) = 0來得到。 若A是一個n×n矩陣,則pA為n次多項式,因而A最多有n個特征值。 反過來,代數(shù)基本定理說這個方程剛好有n個根,如果重根也計算在內(nèi)的話。所有奇數(shù)次的多項式必有一個實數(shù)根,因此對于奇數(shù)n,每個實矩陣至少有一個實特征值。在實矩陣的情形,對于偶數(shù)或奇數(shù)的n,非實數(shù)特征值成共軛對出現(xiàn)。
  求特征向量
  一旦找到特征值λ,相應(yīng)的特征值可以通過求解如下方程得到:
  沒有實特征值的一個矩陣的例子實順時針90度旋轉(zhuǎn):
  其特征多項式是λ2 + 1,因此其特征值成復(fù)共軛對出現(xiàn):i, -i。相應(yīng)的特征向量也是非實數(shù)的。
  數(shù)值計算
  關(guān)于此話題更進一步的細節(jié),見特征值算法。
  在實踐中,大型矩陣的特征值無法通過特征多項式計算。計算該多項式本身相當費資源,而精確的“符號式”的根對于高次的多項式來說很難計算和表達:阿貝爾-魯費尼定理顯示高次(5次或更高)多項式的根無法用n次方根來簡單表達。對于估算多項式的根的有效算法是有的,但特征值中的小誤差可以導(dǎo)致特征向量的巨大誤差。因此,尋找特征多項式和特征值的一般算法,是迭代法。最簡單的方法是冪法:取一個隨機向量v,然后計算如下的一系列單位向量
  , , , ...
  這個序列幾乎總是收斂于最大絕對值的特征值所對應(yīng)的特征向量。這個算法很簡單,但是本身不是很有用。但是,象QR算法這樣的算法正是以此為基礎(chǔ)的。
  性質(zhì)
  代數(shù)重次
  A的一個特征值λ的代數(shù)重次是λ作為A的特征多項式的零點的次數(shù);換句話說,若λ是一個該多項式的根,它是因子(t ? λ)在特征多項式中在因式分解后中出現(xiàn)的次數(shù)。一個n×n矩陣有n個特征值,如果將代數(shù)重次計算在內(nèi)的話,因為其特征多項式次數(shù)為n。
  一個代數(shù)重次1的特征值為“單特征值”。
  在關(guān)于矩陣理論的條目中,可能會遇到如下的命題:
  "一個矩陣A的特征值為4,4,3,3,3,2,2,1,"
  表示4的代數(shù)重次為二,3的是三,2的是二,而1的是1。這樣的風格因為代數(shù)重次對于矩陣理論中的很多數(shù)學證明很重要而被大量使用。
  回想一下,我們定義特征向量的幾何重次為相應(yīng)特征空間的維數(shù),也就是λI ? A的零空間。代數(shù)重次也可以視為一種維數(shù):它是相應(yīng)廣義特征空間 (第一種意義)的維數(shù),也就是矩陣(λI ? A)k對于任何足夠大的k的零空間。也就是說,它是“廣義特征向量”(第一種意義)的空間,其中一個廣義特征向量是任何一個如果 λI ? A作用連續(xù)作用足夠多次就“最終”會變0的向量。任何特征向量是一個廣義特征向量,以此任一特征空間被包含于相應(yīng)的廣義特征空間。這給了一個幾何重次總是小于代數(shù)重次的簡單證明。這里的第一種意義不可和下面所說的廣義特征值問題混淆。
  例如:
  它只有一個特征值,也就是λ = 1。其特征多項式是(λ ? 1)2,所以這個特征值代數(shù)重次為2。但是,相應(yīng)特征空間是通常稱為x軸的數(shù)軸,由向量線性撐成,所以幾何重次只是1。
  廣義特征向量可以用于計算一個矩陣的若當標準型(參看下面的討論)。若當塊通常不是對角化而是冪零的這個事實與特征向量和廣義特征向量之間的區(qū)別直接相關(guān)。
  一般矩陣分解定理
  如上所述,譜定理表明正方形矩陣可以對角化當且僅當它是正規(guī)的。對于更一般的未必正規(guī)的矩陣,我們有類似的結(jié)果。當然在一般的情況,有些要求必須放松,例如酉等價性或者最終的矩陣的對角性。 所有這些結(jié)果在一定程度上利用了特征值和特征向量。下面列出了一些這樣的結(jié)果:
  舒爾三角形式表明任何矩陣酉等價于一個上三角矩陣;
  奇異值分解定理, A = UΣV * 其中Σ為對角陣,而U,V為酉矩陣。A = UΣV * 的對角線上的元素非負,而正的項稱為A的奇異值。這對非正方形矩陣也成立;
  若當標準型,其中A = UΛU ? 1 其中Λ不是對角陣,但是分塊對角陣,而U是酉矩陣。若當塊的大小和個數(shù)由特征值的幾何和代數(shù)重次決定。若當分解是一個基本的結(jié)果。從它可以立即得到一個正方形矩陣可以完全用它的特征值包括重次來表述,最多只會相差一個酉等價。這表示數(shù)學上特征值在矩陣的研究中有著極端重要的作用。
  作為若當分解的直接結(jié)果,一個矩陣A可以“唯一”地寫作A = S + N其中S可以對角化,N是冪零的(也即,對于某個q,Nq=0),而S和N可交換(SN=NS)。
  任何可逆矩陣A可以唯一地寫作A = SJ,其中S可對角化而J是么冪矩陣 (也即,使得特征多項式是(λ-1)的冪,而S和J可交換)。
  特征值的一些另外的屬性
  譜在相似變換下不變: 矩陣A和P-1AP有相同的特征值,這對任何矩陣A和任何可逆矩陣 P都成立。譜在轉(zhuǎn)置之下也不變:矩陣A和AT有相同的特征值。
  因為有限維空間上的線性變換是雙射當且僅當它是單射,一個矩陣可逆當且僅當所有特征值都不是0。
  若當分解的一些更多的結(jié)果如下:
  一個矩陣是對角陣當且僅當代數(shù)和幾何重次對于所有特征值都相等。特別的有,一個n×n矩陣如果有n不同特征值,則總是可以對角化的。
  矩陣作用的向量空間可以視為其廣義特征向量所撐成的不變子空間的直和。對角線上的每個塊對應(yīng)于該直和的一個子空間。若一個塊是對角化的,其不變子空間是一個特征空間。否則它是一個廣義特征空間,如上面所定義;
  因為跡,也就是矩陣主對角線元素之和,在酉等價下不變,若當標準型說明它等于所有特征值之和;
  類似的有,因為三角矩陣的特征值就是主對角線上的項,其行列式等于等于特征值的乘積(按代數(shù)重次計算出現(xiàn)次數(shù))。
  正規(guī)矩陣的一些子類的譜的位置是:
  一個厄爾米特矩陣(A = A*)的所有特征值是實數(shù)。進一步的有,所有正定矩陣(v*Av > 0 for all vectors v)的所有特征值是正數(shù);
  所有斜厄爾米特矩陣(A = ?A*)的特征值是純虛數(shù);
  所有酉矩陣(A-1 = A*)的特征值絕對值為1;
  假設(shè)A是一個m×n矩陣,其中m ≤ n,而B是一個n×m矩陣。則BA有和AB相同的特征值加上n ? m個等于0的特征值。
  每個矩陣可以被賦予一個算子范數(shù)。算子范數(shù)是其特征值的模的上確界,因而也是它的譜半徑。該范數(shù)直接和計算最大模的特征值的冪法直接相關(guān)。當一個矩陣是正規(guī)的,其算子范數(shù)是其特征值的最大模,并且獨立于其定義域的范數(shù)。
  共軛特征向量
  一個共軛特征向量或者說共特征向量是一個在變換下成為其共軛乘以一個標量的向量,其中那個標量稱為該線性變換的共軛特征值或者說共特征值。共軛特征變量和共軛特征值代表了和常規(guī)特征向量和特征值相同的信息和含義,但是在交替坐標系統(tǒng)被使用的時候出現(xiàn)。對應(yīng)的方程是:
  例如,在相干電磁散射理論中,線性變換A代表散射物體施行的作用,而特征向量表示電磁波的極化狀態(tài)。在光學中,坐標系統(tǒng)按照波的觀點定義,稱為前向散射對齊 (FSA),從而導(dǎo)致了常規(guī)的特征值方程,而在雷達中,坐標系統(tǒng)按照雷達的觀點定義,稱為后向散射對齊 (BSA),從而給出了共軛特征值方程。
  廣義特征值問題
  一個廣義特征值問題(第二種意義)有如下形式
  其中A和B為矩陣。其廣義特征值(第二種意義)λ 可以通過求解如下方程得到
  形如A ? λB的矩陣的集合,其中λ是一個復(fù)數(shù),稱為一個“鉛筆”。 若B可逆,則最初的問題可以寫作如下形式
  也即標準的特征值問題。但是,在很多情況下施行逆操作是不可取的,而廣義特征值問題應(yīng)該如同其原始表述來求解。
  如果A和B是實系數(shù)的對稱矩陣,則特征值為實數(shù)。這在上面的第二種等價表述中并不明顯,因為矩陣B ? 1A未必是對稱的。
  這里的一個例子是分子軌道應(yīng)用如下。
  系數(shù)為環(huán)中元素
  在方矩陣A,其系數(shù)屬于一個環(huán)的情況,λ稱為一個右特征值如果存在一個列向量x使得Ax=λx,或者稱為一個左特征值如果存在非零行向量y使得yA=yλ。
  若環(huán)是可交換的,左特征值和右特征值相等,并簡稱為特征值。否則,例如當環(huán)是四元數(shù)集合的時候,它們可能是不同的。
  若向量空間是無窮維的,特征值的概念可以推廣到譜的概念。譜是標量λ的集合,對于這些標量,沒有定義,也就是說它們使得沒有有界逆。
  很明顯,如果λ是T的特征值,λ位于T的譜內(nèi)。一般來講,反過來并不成立。在希爾伯特空間或者巴拿赫空間上有一些算子完全沒有特征向量。這可以從下面的例子中看到。 在希爾伯特空間(所有標量級數(shù)的空間,每個級數(shù)使得收斂)上的雙向平移沒有特征向量卻有譜值。
  在無窮維空間,有界算子的譜系總是非空的,這對無界自共軛算子也成立。通過檢驗譜測度,任何有界或無界的自共軛算子的譜可以分解為絕對連續(xù),離散,和孤立部分。指數(shù)增長或者衰減是連續(xù)譜的例子,而振動弦駐波是離散譜例子。氫原子是兩種譜都有出現(xiàn)的例子。氫原子的束縛態(tài)對應(yīng)于譜的離散部分,而離子化狀態(tài)用連續(xù)譜表示。圖3用氯原子的例子作了解釋。
  應(yīng)用
  薛定諤方程
  一個變換用微分算子代表的特征值方程的例子是量子力學中的時不變薛定諤方程
  HΨE = EΨE
  其中H是哈密爾頓算子,一個二階微分算子而ΨE是波函數(shù),對應(yīng)于特征值E的特征函數(shù),該值可以解釋為它的能量。
  圖4. 一個氫原子中的一個電子的束縛態(tài)所對應(yīng)的波函數(shù)可以視為氫原子哈密爾頓算子的一個特征向量,也是角動量算子的一個特征向量。它們對應(yīng)于可以解釋為它們的能量(遞增:n=1,2,3,...)和角動量(遞增:s, p, d,...)的特征值。這里畫出了波函數(shù)絕對值的平方。更亮區(qū)域?qū)?yīng)于位置測度的更高概率密度。每幅圖的中心都是原子核,一個質(zhì)子但是,在這個情況我們只尋找薛定鄂方程的束縛態(tài)解,就像在量子化學中常做的那樣,我們在平方可積的函數(shù)中尋找ΨE。因為這個空間是一個希爾伯特空間,有一個定義良好的標量積,我們可以引入一個基集合,在其中ΨE和H可以表示為一個一維數(shù)組和一個矩陣。這使得我們能夠用矩陣形式表達薛定鄂方程。(圖4代表氫原子哈密爾頓算子的最低能級特征函數(shù)。)
  狄拉克記法經(jīng)常在這個上下文中使用,以強調(diào)狀態(tài)的向量和它的表示,函數(shù)ΨE之間的區(qū)別。在這個情況下,薛定鄂方程寫作
  并稱是H的一個本征態(tài)(H有時候在入門級課本中寫作),H被看作是一個變換(參看觀測值)而不是一個它用微分算子術(shù)語進行的特定表示。在上述方程中,理解為通過應(yīng)用H到得到的一個向量。
  分子軌道
  在量子力學中,特別是在原子物理和分子物理中,在Hartree-Fock理論下,原子軌道和分子軌道可以定義為Fock算子的特征向量。相應(yīng)的特征值通過Koopmans定理可以解釋為電離勢能。在這個情況下,特征向量一詞可以用于更廣泛的意義,因為Fock算子顯式地依賴于軌道和它們地特征值。如果需要強調(diào)這個特點,可以稱它為隱特征值方程。這樣地方程通常采用迭代程序求解,在這個情況下稱為自洽場方法。在量子化學中,經(jīng)常會把Hartree-Fock方程通過非正交基集合來表達。這個特定地表達是一個廣義特征值問題稱為Roothaan方程。
  因子分析
  在因素分析中,一個協(xié)變矩陣的特征向量對應(yīng)于因素,而特征值是因素負載。因素分析是一種統(tǒng)計學技術(shù),用于社會科學和市場分析、產(chǎn)品管理、運籌規(guī)劃和其他處理大量數(shù)據(jù)的應(yīng)用科學。其目標是用稱為因素的少量的不可觀測隨機變量來解釋在一些可觀測隨機變量中的變化??捎^測隨機變量用因素的線性組合來建模,再加上“殘差項。
  圖5. 特征臉是特征變量的例子特征臉
  在圖像處理中,臉部圖像的處理可以看作分量為每個像素的輝度的向量。該向量空間的維數(shù)是像素的個數(shù)。一個標準化面部圖形的一個大型數(shù)據(jù)集合的協(xié)變矩陣的特征向量稱為特征臉。它們對于將任何面部圖像表達為它們的線性組合非常有用。特征臉提供了一種用于識別目的的數(shù)據(jù)壓縮的方式。在這個應(yīng)用中,一般只取最大那些特征值所對應(yīng)的特征臉。
  慣量張量
  在力學中,慣量的特征向量定義了剛體的主軸。慣量是決定剛體圍繞質(zhì)心轉(zhuǎn)動的關(guān)鍵數(shù)據(jù)。
  應(yīng)力張量
  在固體力學中,應(yīng)力張量是對稱的,因而可以分解為對角張量,其特征值位于對角線上,而特征向量可以作為基。因為它是對角陣,在這個定向中,應(yīng)力張量沒有剪切分量;它只有主分量。
  的特征值
  在譜系圖論中,一個圖的特征值定義為圖的鄰接矩陣A的特征值,或者(更多的是)圖的拉普拉斯算子矩陣I ? T ? 1 / 2AT ? 1 / 2,其中T是對角陣表示每個頂點的度數(shù),在T ? 1 / 2中,0用于取代0 ? 1 / 2。圖的主特征向量用于測量其頂點的中心度。Google的PageRank算法就是一個例子。www圖的修正鄰接矩陣的主特征向量的分量給出了頁面評分。
  備注
  ^ T. W Gorczyca, Auger Decay of the Photoexcited Inner Shell Rydberg Series in Neon, Chlorine, and Argon, 第18次X射線和內(nèi)殼層進程國際會議的摘要,芝加哥,1999年8月23-27日。
  ^ 在這個上下文,只考慮從一個向量空間到自身的線性變換。
  ^ 因為所有線性變換保持零向量不變,它不作為一個特征向量。

擴展閱讀:
1.Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press (1985). ISBN 0-521-30586-1 (hardback), ISBN 0-521-38632-2 (平裝).
2.John B. Fraleigh and Raymond A. Beauregard, Linear Algebra (3rd edition), Addison-Wesley Publishing Company (1995). ISBN 0-201-83999-7 (國際版).
3.Claude Cohen-Tannoudji, Quantum Mechanics, Wiley (1977). ISBN 0-471-16432-1. (Chapter II. The mathematical tools of quantum mechanics.)
本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
矩陣的特征值的含義
瞎扯數(shù)學分析3、泛函分析簡介
論壇推薦:極點零點之我見
MATLAB矩陣特征值和奇異值
直覺是科學研究的靈魂 - gfcao的博文 - 構(gòu)建全球華人科學社區(qū) - 科學網(wǎng)
數(shù)學天才陶哲軒和三位物理學家的新發(fā)現(xiàn):特征向量全新求解公式
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服